Bonjour,
J'ai pensé que cela pourrait sûrement intéresser certaines personnes du lab. Désolé pour l'annonce tardive, la conférence a lieu demain à 15h30 à McGill.
Bonne soirée,
Sébastien
From: CRM activites@CRM.UMontreal.CA To: lofficiel lofficiel@CRM.UMontreal.CA Subject: [CRM-L'officiel] COLLOQUE CRM-ISM-GERAD DE STATISTIQUE: R. Nugent (Le vendredi 26 octobre 2007)
RAPPEL - REMINDER - RAPPEL - REMINDER - RAPPEL
****************************************************************** COLLOQUE CRM-ISM-GERAD DE STATISTIQUE ******************************************************************
CONFERENCIER(S) / SPEAKER(S) : Rebecca Nugent (Carnegie Mellon University)
TITRE / TITLE : "Visualizing Clusters With a Density-Based Similarity Measure"
LIEU / PLACE : McGill, Burnside Hall, 805 Sherbrooke O., BH 1B45
DATE : Le vendredi 26 octobre 2007 / Friday, October 26, 2007
HEURE / TIME : 15 h 30 / 3:30 p.m.
RESUME / ABSTRACT : The goal of clustering is to identify distinct groups in a dataset and assign a group label to each observation. To cast clustering as a statistical problem, we regard the data as a sample from an unknown density p(x). To generate clusters, we estimate the properties of p(x) either with parametric (model-based) or nonparametric methods. In contrast, the algorithmic approach to clustering (linkage methods, spectral clustering) applies an algorithm, often based on a distance measure, to data in m-dimensional space. Many commonly used clustering methods employ functions of Euclidean distance between observations to determine groupings. Spherical groups are easily identified, curvilinear groups less so. We first motivate the use of a density-based similarity measure and briefly introduce generalized single linkage, a graph-based clustering approach. We describe a refinement algorithm used to bound the measure and then explore the performance of this measure in clustering and visualization methods.
****************************************************************** http://www.crm.umontreal.ca/cgi/Stats.csh