Please note the *different location: room Z-209* in Pavillon
Claire-McNicoll, located right next to Pavillon André-Aisenstadt.
Next week's seminar (see
http://www.iro.umontreal.ca/article.php3?id_article=107&lang=en):
*Apprentissage de fonctions de classification et d’ordonnancement avec des
données partiellement étiquetées*
by Massih-Reza Amini
Research Officer, Interactive Language Technologies
NRC Institute for Information Technology
Gatineau, Quebec
Location: *Pavillon Claire-McNicoll (UdeM), room Z-209*
Time: Tuesday, February 2, 14:30.
Avec le développement des technologies d’information on assiste depuis
quelques années à une nouvelle impulsion pour la conception de nouveaux
cadres d’apprentissage automatique. C’est le cas par exemple du paradigme
semi-supervisé qui a vu le jour vers la fin des années 90 dans la communauté
apprentissage. Les premiers travaux dans ce cadre ont été motivés par le
développement du web qui a entraîné une production massive de données
textuelles très hétérogènes. Ces masses de données sont généralement livrées
sous forme brute, sans étiquetage a priori et pour les exploiter on était
alors réduit à utiliser des techniques non-supervisées. Ces approches bien
que totalement génériques ne permettent cependant qu’une analyse limitée des
informations de contenu et ne répondent pas ainsi aux demandes de nombreuses
tâches de Recherche d’Information (RI). L’idée pragmatique développée pour
l’apprentissage semi-supervisé était née de la question; "comment réduire
l’effort d’étiquetage et utiliser simultanément une petite quantité de
données étiquetées avec la masse de données non-étiquetées disponible pour
apprendre?" Un autre exemple de l’émergence de nouveaux cadres
d’apprentissage concerne le développement de méthodes automatiques pour la
recherche et l’ordonnancement d’entités d’information sur des corpus de
grandes tailles. Récemment beaucoup de travaux se sont intéressés à la
formulation des différentes formes de la tâche d’ordonnancement. Ces travaux
ont proposé des algorithmes et développé des cadres théoriques pour la
prédiction d’ordres totaux ou partiels sur les exemples. La Recherche
d’Information est une fois encore le domaine par excellence où les modèles
d’apprentissage de fonctions d’ordonnancement jouent un rôle prépondérant.
Dans notre étude nous nous sommes intéressés à deux cadres d’ordonnancement
d’instances et d’alternatives. Dans le premier cas il s’agit d’ordonner les
exemples (où instances) d’une collection donnée de façon à ce que les
exemples jugés pertinents soient ordonnés au—dessus des exemples
non—pertinents et dans le second cas nous cherchons à ordonner les
alternatives d’une collection donnée par rapport à chaque exemple d’entrée.
Je présenterai l’ensemble de mes travaux suivant ces deux axes en commençant
par l’apprentissage semi-supervisé de fonctions de classification qui est
plutôt un travail algorithmique. Je décrirai ensuite le cadre théorique que
nous avons proposé pour l’apprentissage de fonctions d’ordonnancements avec
comme application l’apprentissage actif de fonctions d’ordonnancement
d’alternatives.
--
http://dumitru.ca, +1-514-432-8435
---------- Forwarded message ----------
From: Marina Sokolova <msokolova(a)ehealthinformation.ca>
Date: Tue, Jan 12, 2010 at 11:56 AM
Subject: SECOND CALL for papers
To: Guillaume Desjardins <guillaume.desjardins(a)gmail.com>
Canadian Conference on AI 2010
Graduate Students Symposium
May 30th, University of Ottawa, Ontario, Canada
Call For Paper - Deadline 30 January 2010
http://glass.cs.unb.ca/~ebrahim/conf/cai-gs/
AI 2010, the twenty-third Canadian Conference on Artificial
Intelligence, invites graduate students to submit four-page extended
abstracts of their thesis for possible inclusion in the AI 2010
Graduate Student Symposium and the Canadian AI proceedings published
by Springer.
Symposium Objectives
The Symposium provides an opportunity for Master's and PhD students to
discuss and explore their research interests and career objectives
with their peers and with a panel of established researchers in
Artificial Intelligence, helping to develop a supportive community of
scholars and a spirit of collaborative research.
The symposium will be a one-day pre-conference event, where students
of accepted abstracts will be invited to give a presentation on their
thesis work before a group of peers as well as a small team of expert
AI researchers who would offer a critique of each presentation and
provide support, advice, and mentoring. Each student may also be
invited to participate in the poster session during the main
conference. In addition, a small selection of the best student
submissions will be invited to give a short talk during the main
conference.
PhD and Master's students are invited to submit original work in all
areas of Artificial Intelligence. Submissions should have emphasis on
work in progress, with directions for future research clearly
indicated wherever appropriate. More weight will be placed on the
significance of the work, the proposed ideas or solutions, and the
overall presentation than on submissions which present work with
complete results.
The Application Package
Applicants to the symposium need to submit the following materials.
Please combine all materials into one PDF document:
* A four-page thesis summary that outlines the problem being
addressed, the proposed plan for research, and a description of the
progress to date. The most successful applications directly address
all three of these components. Please be sure to distinguish between
work that has already been accomplished and work that remains to be
done. Be sure to include a title for your work. All submissions must
be written in English. Abstracts may be up to 4 pages in length and
must be formatted according to Springer's LNCS style. Please follow
the instructions for authors at Springer's site for authors. The use
of the LaTeX2e style file available at the web site is strongly
encouraged.
* Include a CV (at most two pages) that describes your background
and relevant experience (research, education, employment). Your CV
needs to include your anticipated graduation date, or it may be
rejected without review. Please include any additional items that may
indicate your potential contribution to, and benefit from, the
symposium.
* A letter of recommendation from your thesis advisor. It must
include an assessment of the current status of your thesis research,
and an expected date for thesis submission. In addition, your advisor
should indicate what he or she hopes you would gain from participation
in the symposium.
* Participant's Expectations. A short (one page or less) statement
of what you expect to gain from presenting and participating in the
symposium, as well as what you think you can contribute to the
symposium. For best consideration, your statement must address both of
these expectations.
The Reviewing Process
Each abstract will be reviewed by a team of program committee members.
Presenting students will be selected based on clarity of the
submission, stage of research, advisor's letter and evidence of
promise such as published papers or technical reports. (Partial)
Financial assistance for travel and accommodations may be available to
the students presenting at the Symposium.
All students are encouraged to attend and participate in the
Symposium, whether or not they apply to present their work. All the
selected student presenters are expected to actively participate in
the full Symposium, as we envision participants gaining as much by
interacting with their peers as by having their presentations
critiqued by the faculty panel. In addition, a senior AI researcher
and faculty member will be invited to give a talk on a topic of
interest to graduate students.
Important Dates
Package submission due January 30th, 2010
Notification of acceptance March 3rd, 2010
Final paper due March 8th, 2010
Program Co-chairs:
Ebrahim Bagheri, National Research Council Canada and Athabasca
University
Marina Sokolova, CHEO Research Institute, University of Ottawa