[gambit-list] Kahan's codes for complex functions
Bradley Lucier
lucier at math.purdue.edu
Mon Nov 18 18:21:04 EST 2013
Marc:
I've started implementing the codes in Kahan's paper "Branch Cuts for
Complex Elementary Functions, or Much Ado About Nothing's Sign Bit".
The first nontrivial code is for complex magnitude, which he calls cabs.
I've met Kahan a number of times, mainly when I was a graduate student,
and he's a very bright guy. A bit scary, actually.
Anyway, I've now compared his code to our current magnitude code for
1,000,000 pairs of floating-point numbers exponentially distributed (the
logarithms are distributed uniformly) between the smallest positive
flonum and the largest finite flonum.
A correctly-rounded result has an error of less than 1/2 unit in the
last place (ulp). I recorded the number of times the answers were
incorrect (but still within one ulp of the true answer) and the number
of times the error was greater than 1 ulp. The correct answers were
computed using my computable reals code.
The results were as follows:
Current Gambit magnitude:
Incorrect, but within 1 ulp: 7909
Incorrect, error > 1 ulp: 2132
Kahan's cabs:
Incorrect, but within 1 ulp: 150
Incorrect, error > 1 ulp: 0
Like I said, a bit scary.
Brad
More information about the Gambit-list
mailing list