Hi all,
It gives me great pleasure to announce Guillaume's defence. It is this Thursday 15:30 in AA3195. Here is the title and abstract:
Improving Sampling, Optimization and Feature Extraction in Boltzmann Machines Despite the current widescale success of deep learning in training large scale hierarchical models through supervised learning, unsupervised learning promises to play a crucial role towards solving general Artificial Intelligence, where agents are expected to learn with little to no supervision. The work presented in this thesis tackles the problem of unsupervised feature learning and density estimation, using a model family at the heart of the deep learning phenomenon: the Boltzmann Machine (BM). We present contributions in the areas of sampling, partition function estimation, optimization and the more general topic of invariant feature learning.
With regards to sampling, we present a novel adaptive parallel tempering method which dynamically adjusts the temperatures under simulation to maintain good mixing in the presence of complex multi-modal distributions. When used in the context of (stochastic) maximum likelihood (SML) training, the improved ergodicity of our sampler translates to increased robustness to learning rates and faster per epoch convergence. Though our application is limited to BM, our method is general and is applicable to sampling from arbitrary probabilistic models using Markov Chain Monte Carlo (MCMC) techniques. While SML gradients can be estimated via sampling, computing data likelihoods requires an estimate of the partition function. Contrary to previous approaches which consider the model as a black box, we provide an efficient algorithm which instead tracks the change in log partition function incurred by successive parameter updates. Our algorithm frames this estimation problem as one of filtering performed over a 2D lattice, with one dimension representing time and the other temperature.
On the topic of optimization, our thesis presents a novel algorithm for applying the natural gradient to large scale Boltzmann Machines. Up until now, its application had been constrained by the computational and memory requirements of computing the Fisher Information Matrix (FIM), which is square in the number of parameters. The Metric-Free Natural Gradient algorithm (MFNG) avoids computing the FIM altogether by combining a linear solver with an efficient matrix-vector operation. The method shows promise in that the resulting updates yield faster per-epoch convergence, despite being slower in terms of wall-time.
Finally, we explore how invariant features can be learnt through modifications to the BM energy function. We study the problem in the context of the spike & slab RBM, which we extend to handle both binary and sparse input distributions. By associating each spike with several slab variables, latent variables can be made invariant to a rich, high dimensional subspace resulting in increased invariance in the learnt representation. When using the expected model posterior as input to a classifier, increased invariance translates to improved classification accuracy in the low-label data regime. We conclude by showing a connection between invariance and the more powerful concept of disentangling factors of variation. While invariance can be achieved by pooling over subspaces, disentangling can be achieved by learning multiple complementary views of the same subspace. In particular, we show how this can be achieved using third-order BMs featuring multiplicative interactions between pairs of random variables.
Hope to see many of you there !
Razvan
Afficher les réponses par date
The room and place **has changed**.
Guillaume defence is going to be **Thursday 15:00 in room Z-245, Pavillon Claire McNicoll**.
Sorry for the mistake.
Hope to see many of you there. Razvan
On Mon, Feb 17, 2014 at 7:45 PM, Razvan Pascanu r.pascanu@gmail.com wrote:
Hi all,
It gives me great pleasure to announce Guillaume's defence. It is this Thursday 15:30 in AA3195. Here is the title and abstract:
Improving Sampling, Optimization and Feature Extraction in Boltzmann Machines Despite the current widescale success of deep learning in training large scale hierarchical models through supervised learning, unsupervised learning promises to play a crucial role towards solving general Artificial Intelligence, where agents are expected to learn with little to no supervision. The work presented in this thesis tackles the problem of unsupervised feature learning and density estimation, using a model family at the heart of the deep learning phenomenon: the Boltzmann Machine (BM). We present contributions in the areas of sampling, partition function estimation, optimization and the more general topic of invariant feature learning.
With regards to sampling, we present a novel adaptive parallel tempering method which dynamically adjusts the temperatures under simulation to maintain good mixing in the presence of complex multi-modal distributions. When used in the context of (stochastic) maximum likelihood (SML) training, the improved ergodicity of our sampler translates to increased robustness to learning rates and faster per epoch convergence. Though our application is limited to BM, our method is general and is applicable to sampling from arbitrary probabilistic models using Markov Chain Monte Carlo (MCMC) techniques. While SML gradients can be estimated via sampling, computing data likelihoods requires an estimate of the partition function. Contrary to previous approaches which consider the model as a black box, we provide an efficient algorithm which instead tracks the change in log partition function incurred by successive parameter updates. Our algorithm frames this estimation problem as one of filtering performed over a 2D lattice, with one dimension representing time and the other temperature.
On the topic of optimization, our thesis presents a novel algorithm for applying the natural gradient to large scale Boltzmann Machines. Up until now, its application had been constrained by the computational and memory requirements of computing the Fisher Information Matrix (FIM), which is square in the number of parameters. The Metric-Free Natural Gradient algorithm (MFNG) avoids computing the FIM altogether by combining a linear solver with an efficient matrix-vector operation. The method shows promise in that the resulting updates yield faster per-epoch convergence, despite being slower in terms of wall-time.
Finally, we explore how invariant features can be learnt through modifications to the BM energy function. We study the problem in the context of the spike & slab RBM, which we extend to handle both binary and sparse input distributions. By associating each spike with several slab variables, latent variables can be made invariant to a rich, high dimensional subspace resulting in increased invariance in the learnt representation. When using the expected model posterior as input to a classifier, increased invariance translates to improved classification accuracy in the low-label data regime. We conclude by showing a connection between invariance and the more powerful concept of disentangling factors of variation. While invariance can be achieved by pooling over subspaces, disentangling can be achieved by learning multiple complementary views of the same subspace. In particular, we show how this can be achieved using third-order BMs featuring multiplicative interactions between pairs of random variables.
Hope to see many of you there !
Razvan