Potentially interesting math talk today about the eigenspectrum of random matrices:
---------- Forwarded message ---------- From: CRM@crm.umontreal.ca Date: Thu, Oct 2, 2014 at 9:15 AM Subject: **AUJOURD'HUI** : COLLOQUE DES SCIENCES MATHÉMATIQUES DU QUÉBEC / Paul Bourgade To: activites@crm.umontreal.ca
******************************************************************
COLLOQUE DES SCIENCES MATHÉMATIQUES DU QUÉBEC
******************************************************************
DATE : Le jeudi 2 octobre 2014 / Thursday, October 2, 2014
HEURE / TIME : 16 h / 4:00 p.m.
CONFERENCIER(S) / SPEAKER(S) : Paul Bourgade (New York University)
TITRE / TITLE : Universality in random matrix theory
LIEU / PLACE : CRM, UdeM, Pav. André-Aisenstadt, 2920, ch. de la Tour, salle 6214
RESUME / ABSTRACT : Wigner stated the general hypothesis that the distribution of eigenvalue spacings of large complicated quantum systems is universal, in the sense that it depends only on the symmetry class of the physical system but not on other detailed structures. The simplest case for this hypothesis concerns large but finite dimensional matrices.
I will explain some historical aspects random matrix theory, as well as recent techniques developed to prove eigenvalues and eigenvectors universality, for matrices with independent entries from all symmetry classes. The methods are both probabilist (random walks and coupling) and analytic (homogenization for parabolic PDEs).
****************************************************************** Un café sera servi à 15h30 / Coffee will be served at 3:30 pm ******************************************************************