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Abstract

In this paper we propose to exploit reconstruction as a layer-local training signal
for deep learning, be it generative or discriminant, single or multi-modal, super-
vised, semi-supervised or unsupervised, feedforward or recurrent. Reconstruc-
tions can be propagated in a form of target propagation playing a role similar to
back-propagation but helping to reduce the reliance on back-propagation in order
to perform credit assignment across many levels of possibly strong non-linearities
(which is difficult for back-propagation). A regularized auto-encoder tends pro-
duce a reconstruction that is a more likely version of its input, i.e., a small move
in the direction of higher likelihood. By generalizing gradients, target propaga-
tion may also allow to train deep networks with discrete hidden units. If the auto-
encoder takes both a representation of input and target (or of any side information)
in input, then its reconstruction of input representation provides a target towards a
representation that is more likely, conditioned on all the side information. A deep
auto-encoder decoding path generalizes gradient propagation in a learned way that
can thus handle not just infinitesimal changes but larger, discrete changes, hope-
fully allowing credit assignment through a long chain of non-linear operations.
For this to work, each layer must be a good denoising or regularized auto-encoder
itself. In addition to each layer being a good auto-encoder, the encoder also learns
to please the upper layers by transforming the data into a space where it is easier
to model by them, flattening manifolds and disentangling factors. The motivations
and theoretical justifications for this approach are laid down in this paper, along
with conjectures that will have to be verified either mathematically or experimen-
tally.

1 Introduction

Deep learning is an aspect of machine learning that regards the question of learning multiple levels of
representation, associated with different levels of abstraction (Bengio, [2009). These representations
are distributed (Hinton, |1989), meaning that at each level there are many variables or features, which
together can take a very large number of configurations. Deep representations can be learned in a
purely unsupervised way (sometimes with a generative procedure associated with the model), in a
purely supervised way (e.g., a deep feedforward network), or in a semi-supervised way, e.g., with un-
supervised pre-training (Hinton ez al.|, 2006; Bengio et al.|[2007; [Ranzato et al.,[2007). It is possible
to build deep representations that capture the relationships between multiple modalities (Srivastava
and Salakhutdinov, 2014) and to model sequential structure through recursive application (Bottou,
2011) of learned representation-to-representation transformations, e.g. with recurrent neural net-
works (Sutskever, 2012) or recursive neural networks (Socher et al., 2011).

Deep learning methods have essentially relied on three approaches to propagate training signals
across the different levels of representation:



1. Greedy layer-wise pre-training (Hinton ez al.| [2006; Bengio et all 2007; Ranzato et al.|
2007): the lower levels are trained without being influenced by the upper levels, each only
trying to find a better representation of the data as they see it from the output of the previous
level of representation. Although this approach has been found very useful as an initializa-
tion for the second or third approach, its potential disadvantage is that by itself it does not
provide a global coordination between the different levels.

2. Back-propagated gradients: the features must be continuous and gradients with respect to
lower layers (through many non-linearities) appear less able to correctly train them, espe-
cially when considering deeper networks trying to learn more abstract concepts obtained
from the composition of simpler ones (Bengio, 2009; |Gulcehre and Bengiol [2013). This
is especially true of very deep or recurrent nets (Hochreiter, (1991} |Bengio er al.| [1994;
Hochreiter and Schmidhuber, [1997; Pascanu et al., |2013), involving the composition of
many non-linear operations. Back-propagation and gradient-based optimization can be
used in a supervised setting (e.g., for classification or regression) or an unsupervised set-
ting, e.g., for training shallow (Vincent ef al., 2008)) or deep (Martens, |2010) auto-encoders
and deep generative models (Goodfellow et al., 2014)).

3. Monte-Carlo Markov chains (MCMC): the stochastic relaxation performed in models such
as Markov random fields and Boltzmann machines (including the Restricted Boltzmann
Machines) propagates information about the observed variables into the parameters gov-
erning the behavior of latent variables (hidden units), so as to make the sufficient statistics
of configurations generated by the model as close as possible as to those obtained when the
observed visibles are clamped. Unfortunately, with some form of MCMC in the inner loop
of training, mixing difficulties may limit our ability to learn models that assign probability
in a sharp way, near manifolds (modes) that are far from each other (Bengio ef al., [2013a;
Bengio, 2013)). This becomes especially troublesome when one tries to learn models of
complex distributions involving a manifold structure in high dimension.

There is a fourth and insufficiently explored approach, to which the proposal discussed here belongs,
based on rarget propagation (LeCun, [1986)). Back-propagation and target propagation are identical
when the target is viewed as an infinitesimal direction of change and the gradient can be computed
analytically (LeCunl [1987)). However, target propagation can also be potentially applied to the case
where the representation involves discrete values (LeCun, |1986). Target propagation was previously
also proposed (Bengio et al., |1994) as a way to defeat some of the optimization difficulties with
training recurrent neural networks, due to long-term dependencies in sequential data. This target
propagation viewpoint is also related to optimization approaches where the representation values
(i.e., hidden unit activations) are free variables that can be optimized over (Carreira-Perpinan and
Wang| 2014)). In this paper, we propose to use auto-encoders (or conditional auto-encoders, whose
“code” can depend on side information as well) to provide learned reconstructions that can be used
as targets for intermediate layers. In a sense, we are proposing to learn the back-propagation com-
putation. In doing so, we generalize back-propagation (for example allowing one to handle discrete-
valued elements of the representation) and make it more biologically plausible as a mechanisms for
brains to perform credit assignment through many levels of a deep computation, including a tem-
porally recurrent one. A recent paper proposes the reweighed wake-sleep algorithm, that learns a
deep generative model and can also handle discrete latent variables (Bornschein and Bengiol [2014),
while being based on a generalization of the wake-sleep algorithm (Hinton e? al., [1995). The pro-
posed target propagation indeed has some similarity to both the original wake-sleep algorithm and
the reweighted wake-sleep algorithm. Unlike the latter, it does not require multiple inference sam-
ples in order to obtain a reasonable gradient during training.

This paper starts by what is probably the simplest and most natural context for the idea of using
reconstruction for target propagation: that of generative models in which each layer is trained as an
auto-encoder, and at any level, the representation h has a distribution prior P(h) which is implicitly
captured by the upper levels. The mathematical framework we propose is based on recent work on
variational auto-encoders (Kingma and Welling, 2014} [Rezende et al., [2014), i.e., a lower bound
on the log-likelihood, but can also be interpreted as trying to match the joint distribution of latent
and observed variables under the generative model and under the composition of the data generating
distribution with a “recognition network” that predicts latent variables given inputs. The main idea
is that upper auto-encoders provide by their reconstruction a proposed change which indicates the



direction of higher prior probability, and can be used as a proxy for the gradient towards making the
lower levels produce outputs that are more probable under the implicit model of the upper levels.

This paper then extends this framework to the classical supervised setting in which both an input
variable x and a target or output variable y are involved. In this case, when y is observed, it constrains
the reconstruction of a layer h that was initially computed based only on z, i.e., the reconstruction
provides a representation value that is compatible with both « and y. This approach can be natu-
rally generalized to multi-modal data, where instead of = and y, one can think of different sensory
modalities #(*). Again, the reconstruction of a representation 2(*) which initially only depends on
() is made to depend on both x(?) and the observations made with other modalities (). Finally,
this framework is applied in the very interesting context of recurrent networks, in which we have a
sequence of x;’s, and the reconstruction of a representation h; of the past sequence incorporates the
constraints induced by future observations.

2 Stacked Auto-Encoders as Generative Models

2.1 Preliminaries and Relevant Recent Work

2.1.1 Notation

Denote h; the layer-I representation, which we generally think of as a random variable, and
h = (h1, ha,...) all the layers of a generative model. Denote p(z, h) the joint distribution over
x and h, structured as a directed graphical model hy, = ... hy = hy; = x with a chain structure:

P(z,h) = P(z|hy)P(h|hs) ... P(hp—1|hp)P(hy). (1)

With © = hg, one can view each P(h;|h;11) as one layer of a generative network, or decoder
network, that maps top-level representations into low-level samples.

This graphical structure is the same as in sigmoidal belief networks (Neal, [1992), but just like for
Helmholtz machines (Dayan et al.l [1995), we will also consider a recognition network, or encoder,
or approximate inference network, which computes in the reverse direction, starting with the un-
known data generating distribution, which we denote Q(X):

Q(z,h) = Q(hrlhr-1) ... Q(h2|h1)Q(h1]2)Q(x). 2)

Accordingly, we define P(h;) and Q(h;) is the marginals respectively associated with the joints P
and @ over all the variables.

2.1.2 Motivating Deterministic Latent Variables

Most deep generative models proposed in the past, such as deep Belief networks (Hinton et al.}
2006)), Helmholtz machines (Dayan et al.,|1995) and deep Boltzmann machines (Salakhutdinov and
Hintonl [2009), have the property that lots of “noise” gets injected at every level of the multilayer
generative model. At the lowest level (P(xz|hq)), it typically means that the generated x is the
“addition” of an expected E[z|h;] and some iid “noise”. This iid noise shows up in generated
samples as high-frequency spatial (for images) or temporal (for acoustics) noise which is not at all
similar to what is observed in the training data. It necessarily moves away from any low-dimensional
manifold near which the distribution concentrates, ruining the possibility of being able to capture
such a sharp distribution.

A similar remark can be made regarding the noise injected when sampling i given hsy, because
the mapping from h; to x is generally simple (e.g. affine + simple saturating non-linearity). The
effect of such noise is especially striking when h; is a vector of stochastic binary units: when h; is
sampled from P(hq|hz2), many independent coin flips are generated to choose the different values
h1;. These independent sources of noise must then somehow be transformed into well-formed «
through a simple mapping (such as the affine transformation composed with sigmoidal non-linearity
typically used in such models). This could only happen if both P(x|h;) and P(hq|hs) are almost
deterministic (i.e. no coin flips), or if the dimension of h; is so large that the independent noise
sources cancel each other. Note that if P(x|h1) and P(hy|hs) are nearly deterministic (i.e., nearly
diracs), then the learning procedures typically proposed for such models break down. For example,



when the weights of a Boltzmann machine become large, MCMCs do not mix and training stalls.
In the case of the recently proposed variational auto-encoder (Kingma and Welling} 2014; Rezende
et al., 2014)) variants (which is based on essentially the same criterion that is exploited here but
has been done with stochastic encoders), the stochastic gradients would explode as the variance
component of some units would approach 0. See the discussion in Section below to clarify
that mathematically.

Another, very different and very interesting view of a deep generative model is offered in the recent
work on adversarial generative networks (Goodfellow et al.,[2014). In that case, randomness can be
viewed as injected at the top level (possibly at lower layers too, but that is a choice of the designer),
while the intermediate levels are considered to be purely deterministic and continuous transforma-
tions. What could make learning in such networks difficult is that one still has to assign credit (by
back-prop) to all the layers of a deep net. Another less well understood potential issue is that for
each update step of the generator network, a discriminator network must be sufficiently re-optimized
to continuously track the decision surface between examples generated by the model and training
examples. Finally, another potential issue (which can be seen as part of the optimization problem) is
that if the generator concentrates on some modes of the data distribution, there is very little pressure
to make it generate samples for the other modes (only for the rare generated samples that approach
these other modes does the generator get a signal). However, a great innovation of the adversarial
network is that it opens the door to generative models in which the noise is injected at the top level,
which we consider here to be a very important feature.

In any case, the basic idea in many of these models is that although the top-level prior P(hy,) is
going to be simple, e.g., factorial or a single RBM, the lower levels gradually transform P(hy,) into
more complex distributions P(h;), ending in P(x). For example, with the manifold learning view,
we can imagine P(hy) as essentially uniform on one or several manifolds where the distribution
concentrates, with hj, representing a coordinate system for the data in an abstract space where all
the variables are independent. That flat manifold is then distorted (and possibly broken down into
separate sub-manifolds for different classes) in complicated non-linear ways. In this view, the job of
the generative network is really just to transform and distort the space such that a simple distribution
gets mapped into a good approximation of the data generating distribution. Similarly, the job of
the encoder networks (the Q(h|z)) is to map a complicated distribution into a simpler one, layer by
layer, to map a highly curved manifold into a flat one. Under that manifold-learning perspective,
we want most of the “noise” to be injected high in the hierarchy. That “noise” represents the high-
level choices about the content of the generated x. For example, the top-level factors in a deep net
modeling images of a single object might include not just the object category but all of its attributes,
geometrical pose parameters, lighting effects, etc. We know from the physics of image synthesis that
the mapping from such high-level variables to pixels is highly non-linear, which means that these
factors should be chosen (i.e. “sampled”) high up in the deep network.

This discussion motivates the use of at least some units (maybe all, or the majority) at each level that
are deterministic functions (in the generative network) of the higher level units. This is a significant
design choice because many current learning algorithms for deep generative nets are not numerically
well suited for learning such deterministic latent variables. As mentionned above, when latent vari-
ables become nearly deterministic, MCMC methods tend to break down. Using stochastic EM (Tang
and Salakhutdinov, 2013) importance sampling, as in Bornschein and Bengio|(2014), or the current
formulations of variational auto-encoders (Kingma and Welling, 2014} Rezende et al.| [2014) may
also become problematic when the distributions considered become nearly deterministic.

This paper is starting from this observation and asking how we can train these kinds of directed
models when the latent variables are, at least in part (or on some large fraction of examples), nearly
deterministic functions of the input.

2.2 A Generative Stack of Auto-Encoders
2.2.1 Matching Recognition and Generative Networks
We propose here that an appropriate objective for training a deep encoder/decoder pair as introduced

above is that the joint distribution over h and x generated by P matches the joint distribution gener-
ated by Q. Later, we will see that this can be reduced to having the marginal distributions P(H;) and



Q(H;) match each other, when the layerwise auto-encoder pairs are good in terms of minimizing
reconstruction error.

The motivation is straightforward: if P(X, H) matches well Q(X, H), then it necessarily means
that its marginals also match well, i.e., the generative distribution P(X) matches well the data
generating distribution Q(X). This criterion is thus an alternative to maximum likelihood (which
tries to directly match P(X) to Q(X)), with the potential advantage of avoiding the associated
intractabilities which arise when latent variables are introduced.

Mathematically, this objective of matching P(X, H) and Q(X, H) can be embodied by the KL-
divergence between () and P, taking () as the reference, since we want to make sure that P puts
probability mass everywhere that @ does (and especially where Q(X) does).

The criterion K L(Q||P) can be decomposed in order to better understand it:
Q(z)Q(h|)
KLQIIP) =E@n~qx.0 logi
SRR Plalh) P(R)
=— H(Q) — Exnqx)En~qiz) 108 P(2|h) — Evnq(x)En~qm|z) log P(h)  (3)
We distinguish three terms:

1. The entropy of the joint distribution of /& and = under (). Because Q(X) is fixed, this turns
out to be equivalent to the average entropy of Q(H |x), for z ~ Q(X):

H(Q) = — Evnq(x) En~qa|r) (log Q(z) +log Q(hlz))
= — Ereqx) (108 Q(x) + Epq|e) log Q(h|z))
=H(Q(X)) + Esrnquo)H(Q(H]z)) @)
where H(P(Ab)) is the entropy of the conditional distribution of A, given B = b. This
allows us to rewrite the KL criterion as follows:
KL(Q||IP) = = H(Q(X)) = Eznqx)H(Q(H|z))—
B ny~q(x,m)log P(x|h) — Epq(m) log P(h) &)
2. The match of observed Q(H) to the generative model P(H ), measured by the log-
likelihood of the samples h ~ Q(H|z),z ~ Q(X) according to the prior P(h). Since
both P(h) and Q(h|z) are free, we see that P(h) will try to match the samples coming
from the encoder, but also that Q(h|z) will try to put & in places where P(h) is high.
3. The reconstruction log-likelihood log P(x|h), when h ~ Q(H |x). This is the traditional
criterion used in auto-encoders.

Note that this criterion is equivalent to the training criterion proposed for the variational auto-
encoder (Kingma and Welling) 2014; Rezende et al., [2014)), i.e., it can also be justified as
a variational bound on the log-likelihood £,.qx)log P(x), where the bound is tight when
Q(h|z) = P(h|z), and the bound arises simply out of Jensen’s inequality or explicitly pulling
out KL(Q(H|z)||P(H|z)):

—E,qx)log P(v) = — B, q(x)En~q(H|2) log P(x)

(z, h)Q(h|z)
(h|z)Q(hlx)
(h]z) Pz, h)
== Ernqx)En~qa|x) 108 + log

Q(X) Q(H|z) P(h|z) Q(h|z)

3]

== Ezx) Ennqi|e) 10g

L v
S

h
=E,nx)KL(Q(H|2)||P(H|2)) + Eynq(x) Ennq(|x) 108 g((x |Z))
Q(h
2Eonq(x) Er~q(a|z) 108 p((,xh))
—KL(Q|[P) + H(Q(X)) ©

where the last line comes from inspection of the previous line compared with Eq.[3] i.e., we have
the (fixed) entropy of the data generating distribution plus the overall K L(Q||P) that we considered
here as a training criterion. In the penultimate line we recognize the variational auto-encoder training
criterion (Kingma and Welling, |2014; Rezende et al.|2014)).



2.2.2 Why Deterministic Encoders

With the above K L(Q||P) criterion, which is, as shown above, the same (up to a non-trained con-
stant H(Q(X))) as the variational auto-encoder (Kingma and Welling, [2014; Rezende et al.,2014),
some numerical issues arise as the learner tries to discover some parts of the representation which
would have small noise, i.e., for which Q(H |x) has small entropy, at least for some components of
it. We develop that below.

Consider Q(H |x) a Gaussian with a mean f(x) and a diagonal variance o(x) (with one value for
each component of 1). Even though the gradient of the entropy term with respect to f () vanishes in
expectation (as discussed above), the stochastic gradient of the entropy term can be arbitrarily large
in magnitude as o;(x) approaches 0 (for any 7). More generally, the same problem will occur if the
covariance matrix is not diagonal, so long as some eigenvector of the covariance matrix goes to 0.
For example, in the scalar case, the stochastic gradient (for a given sample of h ~ Q(H |x)) would

be proportional to £ Sz;h, which goes to infinity when o (z) becomes small, even though in average

it could be 0 (as is the case of the gradient due to the entropy term). Note however that this gradient
may be integrated out over Q(H |x) in the Gaussian case, but this does not completely eliminate the
problem, as the gradient with respect to o2 () is still proportional to 1/0%(x).

In other words, even though the criterion allows in principle to learn nearly deterministic transfor-
mations of x, for numerical reasons the gradients become badly behaved when some units try to
become deterministic (i.e., when their o;(x) becomes small). This in turn prevents learning nearly
deterministic components of the representation. The consequence is that P(z|h) is necessarily going
to have high entropy, because too much crucial information about = has been lost in h ~ Q(H |x).
This entropy necessarily corresponds to “adding noise” at the level of x, and generally this is inde-
pendent noise, which shows up as ugly uncorrelated bits in the generated signals. The only way to
avoid that would be to make P(z|h) a highly multimodal complicated distribution (and this is the
route that|Ozair et al.| (2014) have taken). Therefore, if we want to keep P(z|h) unimodal (with a
simple partition function), it is hypothesized here that we are better off forcing some (or even all)
outputs of the encoder (which will carry the “signal”) to be deterministic functions of x.

2.2.3 A Criterion for Each Layer

Let us consider each layer h; of the chain structure (Eq. 1)) and apply the above K L(Q||P) decom-
position as if we were only considering h; as the latent variable. The objective of this approach
is to provide a training signal for each layer h; and for the parameters of the associated encoders
and decoders (the ones encoding into h; and reconstructing lower layers and the ones encoding and
reconstructing h; from above). We will consider the upper layers h;41, hi42, etc. as implicitly pro-
viding a prior P(h;) since they will be trained to implicitly model h; ~ Q(H;) through the samples
h; that they see as training data. Hence the criterion for layer h; is:

KL(Q'||P) = — HQ(X)) — Esvox) H(QHi|2)) = Ee py~q(x, m) log P(x|hy) + log P(l)] -
@)

Let us consider each of these terms in turn.

1. We ignore the first term because it is fixed.

2. The second term is the average entropy of the conditional distribution Q(H;|z). If we
choose Q(H;|z) to be noise-free, i.e., the deep encoder fl that maps x to h; is not stochastic
and it produces

b = fi(x) ®)
with probability 1, then the entropy of Q(H;|z) is zero and cannot change, by this design
choice.

3. The third term is a reconstruction negative log-likelihood. If we assume that Q(X|h;) is
nearly deterministic, then it is captured by a decoder function g; that maps h; to . Then the
reconstruction log-likelihood is minimized totally if fl and g; form what we call a perfect
auto-encoder relative to QQ(X). More precisely, if h; is computed deterministically as in
Eq.[8] with z ~ Q(X), then the third term is totally minimized so long as

a(fi(z) == 9)



when z ~ Q(X). Note that the auto-encoder §; o fl will be a perfect auto-encoder if each
of the layer-wise auto-encoders below level [ is also a perfect auto-encoder. Let us denote
each layer-wise auto-encoder pair by the encoder f; and the decoder g;, and accordingly

define ~

filz) = filfia (.. f2(fr(2)))) (10)
and

gi(ht) = g1(g2(- - gi—1(g1(h1))))- (11)
Then we have that

gi(fi(hi—1)) = hi—1, Yhi1 ~Q(H;-1), Vi = §z(ﬁ(z)) =z, Vo~Q(X), Vi

(12)
Hence it is enough, to cancel the third term, to make sure that each layer [ is a perfect
auto-encoder for samples from its “input” h; ~ Q(H;). Note that there is an infinite
number of invertible mappings f and g, so up to now we have not specified something
really “interesting” for the system to learn, besides this ability to auto-encode data at each
layer.

4. The last term is the most interesting one, i.e., matching the marginals P(H;) and Q(H;). At
any given layer [, it is doing two things, if we consider the pressure on () and the pressure
on P separately:

(a) This marginal matching term is asking the upper layers to learn a prior P(h;) that gives
high probability to the samples h; ~ @Q(H;). This just means that the “input data”
hi ~ Q(H;) seen by the upper layers must be well modeled by them. For example,
the upper layers prior could be represented by a deep denoising auto-encoder trained
with h; ~ Q(H,) as data. In that case we want h,; to be the target for updating the
reconstruction of the auto-encoder. The input of that auto-encoder could be h; or a
corrupted version of it.

(b) The marginal matching term is also asking the lower layers to choose an invertible
encoding f; such that the transformation of Q(X) into Q(H;) yields samples that
have a high probability under the prior P(H;). In other words, it is asking the lower
layers to transform the data distribution (which may be very complicated, with many
twists and turns) into an easy to model distribution (one that the upper layers can
capture). Note however how the pressure on Q(H;) (i.e., on f; and on P(H;) are
asymmetric. Whereas P(H;) is simply trained to model the “data” h; ~ Q(H;) that it
sees, f is pressured into producing samples more towards the modes of P(H;), thus
tending to make ()(H;) more concentrated and f; contractive. Overall there are thus

two forces at play on f;: to minimize the input space reconstruction error, it would
like to spread out all of the z training examples as uniformly as possible across h-
space. But an opposing force is at play, making Q(H;) concentrate in a few smaller
regions (the modes of P(H;)). If it weren’t for the reconstruction error, f; would
just map every training example to one or a few modes of P(H;) and P(H;) would
just become highly concentrated on those modes. But that would make reconstruction
error of the input very high. So the compromise that seems natural is that f; contracts
(towards modes of P(H;)) in the local directions that it does not need to represent
because they do not correspond to variations present in the data (i.e., it contracts in
the directions orthogonal to the manifolds near which Q(X) concentrates). However,
it yields a more uniform distribution in the directions of variation of the data, i.e., on
the manifolds. Interestingly, we can view the pressure from P(H;) onto the encoder
as a regularizer that prevents the auto-encoder from just learning a general-purpose
identity function (invertible everywhere). Instead, it is forced to become invertible
only where (X)) is non-negligeable.

Below we discuss how a training signal for the lower-levels encoder f, could be pro-
vided by the upper auto-encoder that captures P(h;).

Note that if we include hy = x as one of the layers on which the above criterion is applied, we see
that this is just a proxy for maximum likelihood: at level 0, the only term that remains “trainable” is
E,q(x)log P(X). If P(X) is estimated by a deep regularized auto-encoder, then this proxy is the
usual training criterion for a regularized auto-encoder. One reason why we believe that the criteria



for the other layers helps that it provides a training signal for every intermediate layers of the deep
auto-encoder, thus hopefully making the optimization easier. It also justifies the top-down directed
generative procedure associated with Eq. [I] which is not obviously applicable to an arbitrary deep
auto-encoder, as well as the MAP inference procedure discussed in Section @}

2.2.4 How to Estimate a Target

In the last step of the above decomposition, we are required to specify a change of fi such as to

move h; = fl (z) to a nearby value h; that has a higher probability under P(h;) (or return hy = hyif
h; is already a mode).

Fortunately, we can take advantage of a previously proven theoretical result (Alain and Bengio,
2013), which has been shown in the case where h; is continuous and the training criterion for the
auto-encoder is simply squared error. If a very small quantity of noise is injected in the auto-encoder,
then the difference between the reconstruction iLl and the (uncorrupted) input h; of the auto-encoder
is proportional to an estimator of 310%72(’”), where @Q(h;) here denotes the “true” distribution of the
data seen by the auto-encoder (i.e. samples from Q(H;)).

The basic reason why a denoising auto-encoder learns to map its input to a nearby more probable
configuration is that it is trained to do so: it is trained with (input,target) pairs in which the input
is a corrupted version of the target, and the target is a training example. By definition, training
examples are supposed to have high probability in average (this is what maximum likelihood is
trying to achieve), and a random move around a high probability configuration is very likely to be
a low probability configuration. In the maximum likelihood setup, we are trying to force the model
to put a high probability on the examples and a small probability everywhere else. This is also
what is going on here: we are telling the auto-encoder that it should map points that are not training
examples to a nearby training example. This mental picture also highlights two things: (1) the auto-
encoder training criterion is more local than maximum likelihood (if the noise level is small, it only
sees configurations in the neighborhood of the data), but higher noise levels should mitigate that, and
(2) if we increase the noise level we will make the model do a better job at killing off spurious modes
(configurations that are probable under the model but should not), however the model then might
start fuzzying its reconstruction because the same corrupted configuration could then be reached
from many training examples, so the reconstruction would tend to be somewhere in the middle, thus
filling the convex between neighboring training examples with high probability values. The latter
observation suggests the nearest-neighbor training procedure sketched in Section Another
(orthogonal) solution to spurious modes that was previously proposed (Bengio et al.,[2013b)) and that
works well is the walkback procedure in which the noise is not completely random but along paths
following reconstruction, i.e., we let the learner go from a training example towards a spurious mode
by iterative encode/decode steps and then punish it by telling to reconstruct the starting training
example (this is similar to Contrastive Divergence).

Although we can consider h;—hjasa proxy for 61(’%75](“) and providing a vector field (a vector for

each point /;), keep in mind that this vector is not guaranteed to be a proper gradient, in the sense
that integrating it through different paths could give slightly different results. Only in the asymptotic

non-parametric limit is h; — h; converging to a gradient field. The previous analysis of denoising
auto-encoders (Alain and Bengio, 2013} Bengio et al.l [2013b)) clearly shows that the auto-encoder
implicitly estimates a distribution P(h;) so as to match it as well as possible to its training distri-
bution Q(H;). This is consistent with even earlier results showing that the denoising criterion is a
regularized form of score matching (Vincent, 201 1) called denoising score matching (Swersky et al.,
2011). It is also consistent with a geometric intuition explained in Bengio ef al.| (2013c) suggesting
that if the auto-encoder is regularized (in the sense that it cannot perfectly reconstruct every possible
input), then the output of the encoder will be most (or even only) locally sensitive to the locally
probable variations of the data around the input, and only reconstruct well for inputs that are along
these highly probable regions (manifolds). Indeed, the auto-encoder only has limited representation
resources (this is due to the regularization, contraction of the encoder and decoder functions) and
in order to minimize reconstruction error it must use this capacity where it is really needed, i.e.,
to capture the variations in regions of high density of the data distribution, while ignoring varia-
tions not present in the data, by mapping unlikely input configurations towards nearby more likely
configurations.



Based on this intuition, we conjecture that the above result regarding the meaning of h; — hy can
be generalized to other settings, e.g., where h; is discrete or where a penalty other than the squared
error is used to push h; towards h; when training the auto-encoder.

2.2.5 Putting It All Together: Architecture and Training Scheme

The above allows us to propose an architecture and training scheme for deep generative models that
are also deep auto-encoders, in Algorithm|[I]

Algorithm 1 Proposed Architecture and Training Scheme. Each of the L layers parametrizes an
encoder f; and a decoder g;. When a target on some value (the output of an encoder f; or decoder
g1) 1s specified, it may be used to provide a gradient signal for that encoder or decoder. The top-level
auto-encoder’s ability to be a good generative model could be improved in various ways, e.g. using
the walkback procedure (Bengio ef al.l 2013b) in which we let it go up and down several times
with noise injected and then drive the reconstruction h 1—1 towards either hy,_; or a nearby training
example’s hy,_; representation.

Sample training example hg = z ~ Q(X)
fori=1...Ldo

hi = fi(hi—1)

hy is a target for f;(corrupt(h;_1))
end for
hr = hg

foril=1...1do
if | < L, h; is a target for h;

hi—1 = gi(hi) .
hi—1 is a target for g;(corrupt(h;))
end for

The corruption helps to make both the encoders and decoders contractive. A reasonable choice for
the level of corruption is given by the nearest-neighbor distance between examples in the corre-
sponding representation. In this way, the “empty ball” around each training example is contracted
towards that example, but we don’t want to contract one training example to its neighbor. The cor-
ruption may actually not be necessary for the lower layers encoders because they are regularized by
the layers above them, but this corruption is certainly necessary for the top layer auto-encoder, and
probably for the lower-level decoders as well.

Notice however how the up-going h; and down-going hy paths are free of noise. This is to obtain as

clean as possible of a target. The mathematical derivation of h; — hy as an estimator of 810%7}12(}”)
(up to a constant proportional to the corruption level) relies on the noise-free reconstruction (Alain

and Bengio} 2013).

In Algorithm [I} “A is a target of F'(b)” means that F'(b) should receive a gradient pushing it to

produce an output closer to A. For example, with squared error, the gradient on F'(b) would be
F(b) — A.

Note that the way in which we propose to make a good denoising auto-encoder out of any stack of
auto-encoders starting above layer hy, i.e., capturing P(h;), is slightly different from the traditional
denoising auto-encoder training procedure. It is motivated by the need to train all of them (for
all /) at once, and by the objective to make both the encoders and decoders contractive, whereas
the traditional objective only makes their composition (decode(encode(input))) contractive. The last
motivation is that we want the above training to have a chance to work even without back-prop across
layers, i.e., assuming that a training signal on some output of an up-going encoder f; or down-going
decoder g; is only used for training that layer-wise encoder or decoder. All this is achieved by
making each layer-wise auto-encoder pair (f;,g;) a good auto-encoder both ways, but only for the
data that matters, i.e., either coming from ) or from P. Thus we want g; o f; to reconstruct h;_1
well and we want f; o g; to reconstruct fu well. There are two ways in which each layerwise encoder

becomes contractive: (1) because of the pull towards modes of P(h;) in the line “le is a target for
h,”, and (2) because of the corruption noise in the line “h; is a target for f;(corrupt(h;—1))”. Note



how the latter is contractive around samples from Q(H). Similarly the layerwise decoders are made
contractive around samples from P(h), i.e., the h. This may be useful in order to map samples in

the neighborhood of le towards ;1. This is good because an imperfect P(H;) (which does not
perfectly imitate QQ(H;)) will tend to be less peaky (have more entropy, be flatter) then P(H;), i.e.,
it will tend to sample points in the neighborhood of those that are likely under Q(H;), and we would
like g; to map these “mistakes” back towards the “good values” h;.

2.2.6 Backprop or No Backprop?

In Algorithm[I] we have a reconstruction target h; for the upper auto-encoder and “matching” target
iLl for the encoder f;(z). In traditional auto-encoder and neural network settings, such targets would
be back-propagated as much as possible to provide a signal for all the parameters that influence the
mismatch between h; and ;. We conjecture here that it is not necessary to back-prop all the way
thanks to the particular structure of the deep auto-encoder and the way it is otherwise trained. We
provide a justification for this conjecture below.

The main justification for this conjecture arises out of the fact that we are imposing the K L diver-
gence criterion at every layer. First, consider the training signal on the encoder f; = f; o fi_1. The
lower-level deep encoder f;_; is already receiving a training signal towards making it transform x
into a distribution that matches P(h;_1) well, and P(h;) is related to P(h;_1) through the decoder
g1, which maps samples from P(h;) into samples of P(h;_1). Each layer of the encoder is trying to
transform its distribution into one that is going to be easier to match by the upper layers, flattening
curved manifolds a bit better (keep in mind that a completely flat manifold can be modeled by a sin-
gle linear auto-encoder, i.e., PCA). Hence we conjecture that it is sufficient to only modify f; (and
not necessarily f;_1) towards the target hy. This is because fi—1 itself is going to get its own target
through the target propagation of hy into hy_y. This is analogous to what happens with back-prop:
we use the gradient on the activations of an affine layer [ to update the weights of that layer, and it is
the back-propagation of the gradient on layer [ into the gradient on the layer [ — 1 that takes care of
the lower layers. In a sense, back-propagating these targets more than one layer would be redundant.

Second, consider the training signal on the upper auto-encoder. The consistency estimation theorem
for denoising auto-encoders presented in Bengio et al.|(2013b) only requires that the last step of the
decoder be trained, so long as it has enough capacity to map its input to its target. Furthermore,
if the auto-encoder taking h; 1 in input is presumably already doing a good job (both in the sense
of minimizing reconstruction error and in the sense that P(H;11) and Q(H;+1) are close to each
other), then g;1 1 only needs to learn to prefer the actually sampled “data” h; to other nearby values,
i.e., contracting towards the values it sees as training targets.

It might still be the case that back-propagating all the way further helps Algorithm [I]to converge
faster to a good model of the raw data x, but the main conjecture we are making is that by provid-
ing a training signal at each layer, the proposed training scheme will be less prone to the training
difficulties encountered when training very deep non-linear networks with back-propagated gradi-
ents. Where we expect the back-propagation through layers to give more of an advantage is in the
supervised scenario of Algorithm[4] below.

What we hope is that target propagation can sideskip the difficulties that arise when using back-
propagation for credit assignment, when the dependencies to be captured are highly non-linear. We
already know that strong non-linearities arise out of the composition of many layers in a deep net or
many steps in a recurrent net and make it difficult to learn by back-propagated gradients because the
gradients tend to be either very small (gradient vanishing problem) or very large (gradient explosion
problem). This has been well studied in the case of recurrent networks (Hochreiter, [1991; [Bengio
et al.,[1994; |[Hochreiter and Schmidhuber, |1997), and more recently by |Pascanu ef al.|(2013)). How-
ever, more generally, what to do when the non-linearities are so strong that the derivatives are nearly
or actually O or infinite? This is what happens with discrete activation functions.

A major advantage of not relying on back-prop is therefore that we can now consider the case
where the hidden layer representations are discrete or combine discrete and continuous units at each
layer. An advantage of discrete representations is that they are naturally contractive, since many
input values can potentially be mapped to the same output value due to the discretization step.
For the same reason, a discrete auto-encoder should be naturally “error-correcting”. Discrete (but
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distributed) representations might also be the most natural way to represent input data that is itself
discrete, such as language data. On the other hand, some types of data and underlying factors are
more naturally represented with real values, so we should probably design systems that can capture
both continuous and discrete types.

2.2.7 Sampling From the Model

The training criteria (one for each layer) that are being optimized suggest that we can sample from
the model in many ways, all providing a possibly different estimator of the data generating distribu-
tion (if the encoder/decoder pairs are powerful enough

Hence, in principle (due to the fact that we are minimizing K L(Q(X, H;)||P(X, H;)), Eq.[7} or a
bound on the log-likelihood), we can choose any level [ and generate a sample of x as follows:

1. Sample h; from P(h;).
2. Sample z from P(z|h;), i.e., z = g (k).

The first step involves sampling from the deep denoising auto-encoder that sees h; ~ Q(H;) as
training data (and goes up to hy to encode h;). As demonstrated in |[Bengio et al| (2013b), that
can be achieved by running a Markov chain where at each step we corrupt the previous MCMC
sample, encode it, and decode it. In general one should also add noise proportional to the entropy of
P(hy|hr). We have assumed that decoders were “almost perfect”, i.e., that the entropy of P(h;|hr,)
is zero, in which case no noise would need to be added. In practice, during training, there will be
some residual reconstruction error even when h; ~ Q(H;). In that case, it might be advantageous
to sample from P(h;|hz) in the reconstruction step, i.e., add the appropriate noise. Note how the
effect of that noise is of smearing the distribution one would get otherwise (convolving it with the
noise distribution) so as to make sure to include in the support the examples from Q(H;).

However, as noted in |Alain and Bengio| (2013), one potential issue with sampling from denoising
auto-encoders is that if the amount of corruption is small, then the chain mixes very slowly, and
if it is large, then the reconstruction distribution might not be well approximated by a unimodal
reconstruction distribution (which is what we are advocating here, since we assume that the decoder
is deterministic). What may save the day, as argued in |Bengio ef al.| (2013a) and |Bengio et al.
(2013Db), is that mixing tends to be much easier when done at higher levels of representation. In the
case of this paper, this is readily done by sampling at the top level, i.e., the generative procedure
is summarized in Algorithm 2| In fact, if the top-level auto-encoder is linear, then its prior is a
Gaussian one (see Section [8.1), and we can sample analytically, not requiring a Markov chain.
Similarly, if the top-level auto-encoder is an element-wise auto-encoder (i.e., each dimension is
auto-encoder separately), this really corresponds to a factorial distribution, and again we can sample
analytically without requiring a Markov chain (see Section [8.2). Another interesting direction of
investigation is to replace the reconstruction criterion of the penultimate level h;,_; by one in which
one only tries to reconstruct to a training set near neighbor. This idea is expanded in Section [2.2.§]
below.

2.2.8 Allowing the Top-Level to Mix Well with Nearest-Neighbor Reconstruction

In order to allow the top-level to mix well while allowing the reconstruction distribution to be uni-
modal and factorial (which is what a deterministic reconstruction really is), we propose to train the
top-level denoising auto-encoder or GSN with a criterion that is different from the usual reconstruc-
tion criterion. This follows from a proposal jointly developed with Laurent Dinh We call this new
criterion the nearest-neighbor reconstruction criterion.

The motivation is that if we inject a lot of noise in the auto-encoder, it will be impossible for the
decoder to perfectly reconstruct the input, and that will force it to have a high entropy (sampling

"'We have not proven that here, but we conjecture that a consistency theorem can be proven, and its proof
would hinge on having enough layers to make sure that P(H;) approaches Q(H;), for all layers. There
are already proofs that deep and thin generative networks with enough layers can approximate any distribu-
tion (Sutskever and Hinton, 2008). With enough layers, we conjecture that one should be able to map any
distribution to a factorial one.

2Personal communication
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Algorithm 2 Generative Procedure Associated with the Training Scheme in Algorithm
First, sample hy,_1:
Initialize hy,_; randomly (or from a recorded hy,_; which was sampled from Q(H_1)).
fork=1...Kdo A
hr—1 = gr(fr(corrupt(hr_1))
end for

Second, map hy,_ to x:
forl=L—-1...1do
hi—1 = gi(hy)
end for
Return z = hy

from P(x|h) will add a lot of noise). However, in order for each stochastic encode/decode step to
correspond to a transition of a Markov chain that estimates the data generating distribution as its sta-
tionary distribution, it is enough that the decoder deterministically maps the top-level code towards
the nearest “mode” of the data generating distribution, i.e., towards the nearest training example.
This can be formalized as follows, denoting A for the stochastic transition operator implemented by
a stochastic denoising auto-encoder and Q(X) the data generating distribution (in our case we will
apply this to the top level of representation). A sufficient condition for A to generate Q(X) as its
stationary distribution is that A mixes while applying A to Q(X) leaves Q(X ) unchanged.

Formally this means that the following criterion could be minimized:
KL(QX)AQ(X)) = —H(Q(X)) = Eznq(x) l0g Eurng(x)Alz]2") (13)

where AQ(X) denotes the application of the linear operator A to the distribution Q(X), and A(x|z’)
is the probability that A puts on generating state = when starting from state z’.

Intuitively, it means that we want any training example z’ to be reconstructable from at least some
other example 2’ on which some probable corruption (small amount of noise) would have been
applied (in our case, at the top level of representation). The above criterion involves a double sum
over the training data, which seems to make it impractical. However, the inner expectation can be
approximated by its largest term, which will given by the nearest neighbor of x in representation
space. To see this clearly, first, let us introduce a noise source, which most conveniently would be
injected at the top level of the hierarchy, in some latent variable z, i.e., A is decomposed into the
following three steps: encode 2’ into 2’ = f(2'), add noise to z’ with z = 2’ + noise, and decode
z with x = g¢(z). Furthermore, assume the noise as a rapidly decaying probability as a function
of ||z]|, like the Gaussian noise, favoring the near neighbors of z as candidates for “explaining” it.
Now the above criterion reduces to

KL(QX)[[AQ(X)) = Eznq(x) log arg min P(noise = f(z') — f(2))Q(«") (14)

which in the case where Q(X) is an empirical distribution is just the noise probability for the nearest
neighbor z’ of x in the space of representations f(-). The noise distribution could potentially be a
function of where we are in space and in which case it would roughly have a standard deviation
scaled by the nearest neighbor distance (so that from points far from the data, one would be more
likely to make big jumps to reach the data). To minimize this criterion, it would be sufficient to bring
f(z) and f(a') closer to each other. We see again the same kind of contractive force that we have
observed with the reconstruction-based training. As usual, what prevents f(z) from collapsing into
one or a few points is simply that it also has to keep all the information about x that allows one to
reconstruct z from f(z).

3 Supervised or Semi-Supervised Learning Target Propagation

In this section, we explore how the ideas presented in the previous section can be extended to provide
a layer-local training signal in deep supervised networks. This naturally provides a way to train
a deep network in both supervised and semi-supervised modes. Each observed example is now
assumed to be either an (z, y) input/target pair or a lone input x.
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3.1 Factorial Output Distribution

We will first consider the case where y is a low-dimensional object, such as a category (for classifi-
cation tasks) or a resonably-sized real-valued vector (for regression tasks) for which P(y|z) can be
well approximated by a factorial distribution, given z. In this case we can follow a strategy initiated
with Deep Belief Networks (Hinton et all 2006) and let the top-level auto-encoder (instead of a
top-level RBM) model the joint distribution of y and of hy_1, the learned representation of x.

In this context, we consider a prediction of y given z to be simply given by the reconstruction of y
given hy. A denoising auto-encoder (or more generally a Generative Stochastic Network (Bengio
et al.| |2014)) is naturally trained to reconstruct some of its inputs given the others. The “missing”
inputs must be represented in some standard way that allows the auto-encoder to distinguish the
“missing” value from likely values. When an input variable is discrete and encoded by a one-hot
vector (all zeros except a 1 at the i-th location), a missing value can simply be represented by the
vector of all zeros. When an input variable is continuous, missingness can be represented explicitly
by a binary vector indicating which input is missing, as in |Uria et al.| (2014). The procedure for
predicting y given x is presented in Algorithm 3]

The top-level encoder f1, thus generally takes three arguments, the input representation at the penul-
timate level, h,_1 = fr—1(x), the label y (or O if y is missing), and the mask m (a bit indicating
whether y is observed, m = 1 or missing, m = 0). The decoder g, takes hy, in input and pre-
dicts hz_q and y. We denote g¥ for the part of g;, that predicts y and gz for the part of gy, that
predicts hy,_1. When y is a category (e.g., represented by a one-hot vector), then as usual with
neural networks, one would represent g% with a softmax layer and use cross-entropy (i.e. negative
log-likelihood of y given hr) as a “reconstruction” error.

Algorithm 3 Prediction Procedure Associated with the Supervised Target Propagation Training
Scheme in Algorithm[d] It takes « as input and returns a prediction .

ho =X

forl=1...L—1do
hi = fi(hi—1)

end for

hy = fr(hgp-1,0,0)

Return § = g% (hz).

This architecture, combined with the principle already presented in Algorithm [I] gives rise to the
training procedure summarized in Algorithm ] for the supervised or semi-supervised setups.

A way to make sense of what is going on when training the encoders with the label y being given is to
consider what distribution is used to provide a target (i.e. a reconstruction) for iy _; in Algorithm[4]
For this, we need to generalize a bit the results in|Alain and Bengio| (2013)) regarding the esitmation

of % via the difference between reconstruction h and input h.

Consider an auto-encoder modeling the joint distribution P(C) = P(A, B) of variables A and B,
with C' = (A, B). For any given fixed B = b, the auto-encoder therefore models the conditional dis-
tribution P(A|B), as discussed in|Bengio ef al.|(2013b). The difference between the reconstruction

a of a and q itself is thus the models view of w.

In our case, when we “clamp” y to its observed value, what we get in h L—1 — hp_1 is the top

. dlog P(hr_ . . .
auto-encoder’s estimated W, when h is continuous. In the discrete case, we have argued

above (but it remains to demonstrate formally) that hr_1 is an estimate by the model of a nearby
most likely neighbor of hz,_;.

Extending the argument to lower layers, we see that each hy is an estimate by the upper layers of
a value of the [-th level representation that is near h; and that is more likely than h;, given y. This
is the sense in which this procedure is related to back-propagation and deserves the name of target
propagation.
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Algorithm 4 Target Propagation Training Procedure for Stacked Auto-Encoders in Supervised or
Semi-Supervised Setups. Once trained, such a deep network can be used for predictions following
Algorithm [3]

Sample training example, either (z, y) (labeled) or x (unlabeled).
ho =X
m = 1 if labeled, 0 otherwise (in which case y can take an arbitrary value).
foril=1...L—1do
hi = fi(hi—1)
hy is a target for f;(corrupt(h;—1))
end for
hy = fr(hp—1,m x y,m)
hy, is a target for fr(corrupt(hr—1),m X y,m)

hr =hy . . .
(9, he—1) = gr(hr) = (g} (hr), g7 (hr))
if labeled then ~
y is a target for g¥ (corrupt(hr)))
end if

hi,_1 is a target for g7 (corrupt(hy,))
foril=L-1...1do
h; is a target for h;

/A”Llf1 = gl(ill) A
hi—1 is a target for g;(corrupt(h;))
end for

4 Structured Outputs

If y has a complicated non-factorial conditional distribution, given z, then a simple deterministic
function g% (hr) to predict E[y|hy] is not going to be enough, and we need to find a more powerful
way to capture P(y|x).

In that case, we can have two stacks of auto-encoders, one that mostly models the z-distribution,
P(z), and one that mostly models the y-distribution, P(y), but with the top-level codes hj _; =

fi_i(xz)and hY | = f7_,(y) being such that their joint distribution can easily be modeled by a
top-level auto-encoder. Note that because this joint distribution might be complex (and not fully
captured by the transformations leading from x to h%_, and from y to hY _,), the top-level auto-
encoder itself will probably need to be a deep one (with its own intermediate layers), rather than
a shallow one (which might be ok for straightforward classification problems). In other words,
whereas each stack computes useful features for = and y separately, useful features for their joint
generally requires combining information from both x and y. When ¥ is an explicit one-hot, this
does not seem necessary, but in other cases, it probably is.

Sampling from P(y|z) proceeds as one would expect in a conditional auto-encoder, i.e., compute
hi _4, consider it fixed (clamped), and run a Markov chain on the top-level auto-encoder, resampling

only hY _, ateach step. Then map hY _, to y through the deterministic g7 ;.

5 Multi-Modal Modeling

The supervised and semi-supervised setup described in the previous two sections can easily be gen-
eralized to multi-modal modeling. In particular, if there are two general modalities, then the setup
of the previous section for learning to represent P(x,y) and sampling P(y|z) can be trivially gen-
eralized to obtain a way to sample P(z|y).

If there are N modalities X1 ... X(N)  then the architecture can be naturally generalized as
follows. Have one stack of auto-encoders for each modality, used to transform each modalities
data X® into a representation where the marginal P(X (t)) can be captured easily through some
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P(H®M), with h® = f9 (2®). Thenlet hy_y = (b .. h{?  n{" ) and model hy_; with
another deep stack of generative auto-encoders.

During training, when a subset of modalities is available, encode the missingness of any modality
through a missingness mask m(*) for modality ¢, and use it to turn off the output of fétzl(x(t))

when z(*) is missing (just as we did above when ¥ is missing, in the regular supervised case). Train
the top-level deep auto-encoder on the given examples, possibly randomly hiding some subset of
the observed modalities so as to provide a target for A(*) for those modalities that were available in
the training example but that were hidden at the input of the top-level deep auto-encoder. This is a
modality-level random masking similar to the way denoising auto-encoders are trained with random
masking of the input vector elements (Vincent et al., 2008)).

At test time, any subset of modalities can be sampled given a subset of any of the other modalities,

using the same approach as described in the previous section: compute h(t) NSZI (x®) for the
observed modalities, and start a Markov chain for the top-level auto- encoder keeping the observed
modalities clamped, and initializing the missing modalities using the appropriate missingness masks.
After samples of the missing modalities are obtained, project them back into their input spaces

through &(*) = g(t) (h(t)_l).

6 Target Propagation for Recurrent and Recursive Networks

The ideas introduced in the previous sections can be generalized to handle training of recurrent and
recursive networks by target propagation.

In both cases, we compute a state s; that summarizes a subset % = (z;,,27,41,...,2¢,) of the
input data, e.g., the past sequence (z1, . .. ;) for a recurrent net, and a subsequence associated with
an internal node of a tree, in a recursive net. We can think of the mapping from xil to s; as a
deterministic encoding, the output of a recursively defined encoder. In addition, when capturing the
P distribution of s;, there is “side information” that can help to reconstruct it (to provide a target
for it that will replace back-propagation), i.e., the rest of the sequence. Hence we can imagine an
“upper level” auto-encoder that captures the joint of s; with the implicit representation of the rest
of the sequence. That “auto-encoder”, when given both s; and the representations for the rest of the
sequence as inputs, should then be able to provide a reconstruction for s; that points it towards a
more likely configuration, given the rest of the sequence. Therefore, we can use this reconstruction
as target for training the encoding mapping into s;, in addition to the constraint that this encoder
should be as much as possible invertible by some decoder for the training data.

Here, unlike in our previous discussions, it is unlikely that the decoder will be able to do a nearly
perfect job, even on the training examples, simply because the dimension of s; is fixed while the
dimension of z% is variable. However, if we assume that the state dimension is large enough, we
can also assume that a small reconstruction error will be feasible up to some sequence length. For
longer sequences, it seems that we must allow the reconstruction to be stochastic, i.e., to add some
noise during decoding.

What is the decoder? The decoder should also be recursive, and its basic building block, in the case
of a recurrent net, is the map from the next state s;4; to the tuple combining the current state s; with
the current input x;. To make the decoding easier, one idea would be to assume that the decoder
maps the pair (s;41,x¢11) to the pair (s, x¢), i.e., we think of the recurrent net as a generative one
that predicts the future given the past. This decoding is still a difficult job because, during training,
both x; and z;; are fixed by the data. The advantage of this view is that it also tells us how to
generate “backwards” in addition to “forward”, i.e., by composition of the decoder and sampling the
previous element of the sequence from it. Below we consider a very different route, in which we
bite the bullet that information is lost and the decoder must be stochastic.

Both to handle the possibility that x; has structure (is not a simple one-hot vector) and the possibility
that decoding it cannot be done by a deterministic mapping, it would be good to decompose the
architecture, as suggested in previous sections, into a deterministic transformation part associated
to each z;, mapping it to r,, and into a generative part that captures the uncertainty in the joint
distribution between some part of the sequence and some other part of the sequence.
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More precisely, in the case of a recurrent network, we could have a stack of auto-encoders to model
that joint distribution, with the lowest-level encodder taking s;_; and r; as input, and the higher-level
encoder producing s;. Decoding into s;_1, given s; and r;, would then be done in one backward pass
through the corresponding layer-wise decoders. On the other hand, predicting r; given s;_; would
involve MCMC sampling from the auto-encoder taking (r;, s;_1) as input, conditioned on s;_; (i.e.,
keeping it clamped). In fact, to achieve the best possible sampling, one could generate not just r; but
all the future ones as well (going “up” all the way to the “end” of the sequence and reconstructing
all the subsequent 7’s on the way back). Once an r; is sampled, it can be deterministically mapped
to the corresponding x;.

In both the case of the recurrent net and of the recursive net, we can think of the architecture as a very
deep tree-structured auto-encoder with shared weights, the only difference being that in the case of
a recurrent net, the tree is unbalanced and is really a chain with dangling leaves. This deep auto-
encoding structure allows to resample any part of the sequence given any part (by doing stochastic
encode/decode steps in which only the missing elements are resampled).

The fact that the decoder into the pair (7;, s;—1) cannot in general be “perfect” means that P(s;_1|s;)
and P(r;|s;) must have entropy. It remains to be seen how that uncertainty should be modeled, and
wether a simple unimodal distribution (like a Gaussian or a factored Bernoulli or some cross-product
of such distributions) would be enough to capture the conditional distribution.

What is interesting is that we have potentially removed back-prop from the picture of training a
recurrent or recursive network. It would be very interesting to see if target propagation allows to
train recurrent networks to capture longer-term dependencies than backprop-based training.

7 Making the Auto-Encoders Perfect

The initial discussion on the layer-wise K L training criterion and the use of deterministic encoders
and decoders assumed that we would be able to learn encoder/decoder pairs that are near inverses of
each other for inputs that come respectively from @ (for the encoder) or from P (for the decoder).
Is that a reasonable assumption? Note that we do not mean that the auto-encoders necessarily invert
any x and any h. Only that they do it almost perfectly for almost any sample from respectively () or
P. If Q(X) lives near a low-dimensional manifold, then the encoder can throw away unnecessary
dimensions and thus not be invertible for unlikely input configurations.

As argued above, one motivation for considering the extreme case of perfect auto-encoders rather
than assuming some stochastic reconstruction distribution P(x|h) and stochastic encoder Q(h|x) is
that if we parametrize the auto-encoders in a non-deterministic way, we may end up with numerical
difficulties as they become nearly deterministic in at least some dimensions.

Another, more fundamental motivation for considering perfect auto-encoders is that getting an auto-
encoder pair to be almost perfect is not really difficult if the code dimension is sufficient, and that
what is difficult instead is to make the encoder transform a complicated distribution (Q(X)) into a
simple one (Q(H)), in the sense of being easier to model (which intuitively means “flatter” or more
easily factorisable). The proposal of this paper is to make this transformation gradual, with each
layer contributing a little in it.

Perfect reconstruction on the data points can be achieved automatically in various ways (maybe not
all desirable). For example, if the encoder is an optimization procedure that looks for

f(z) € argmax,, g log P(z|h) (15)

then we get perfect reconstruction so long as S is large enough to have a separate value for each z in
the training set. For example, if  ~ Q(X) lives on a d-dimensional manifold, then S = R% could
be sufficient to get perfect reconstruction.

Another interesting example, that is computationally less demanding, is to make each layer of the
encoder easily invertible. For example, consider the usual non-linear transformation in neural net-
works, with f;(h;—1) = tanh(b; + W;h;_1). The hyperbolic tangent is invertible, and if we make
W; an invertible square d x d matrix, then we can in principle compute the inverse for cost O(d?).
If we choose minibatches of length greater then d, then inverting the weight matrix is of the same
order as computing the matrix multiplication. Even better, we might be able to parametrize W; so
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that it is invertible for a cost O(d?), which is the same as the matrix-vector product. For exam-
ple if W; = LL’, the product of a lower-diagonal matrix and its transpose, then the inverse of W;
can be computed by forward and backward-substitution in O(d?). Another interesting possibility
is to decompose W; = UDV’ where U and V are maintained nearly orthogonal and D is diago-
nal. Maintaining exact orthogonality can be expensive, but maintaining approximate orthogonality
is easy (U and V just need to be the encoders of linear auto-encoders with squared reconstruction
error).

In general, one would expect that one can learn encoder/decoder pairs that are near inverses of each
other, and we can make that almost a hard constraint because there are many ways in which this
can be done, leaving enough degrees of freedom for other desiderata on the auto-encoder, such as
making the distribution simpler as we move up the ladder of representations.

Note that in order for the encoder/decoder pairs to be perfectly matched for the distributions that
they see, it is important that the layers have sufficient size. If the dimension of A; is too small
relative to the dimension of h;_1, then the decoder will not be able to do a nearly perfect job on
the training data. The dimension of h; can be reduced with respect to that of h;_; only to the
extent that the data really lives in a lower-dimensional manifold. Even then, the reduction should
be gradual because the work of compression may be best done in a series of gradual non-linear
steps. What we recommend is to actually keep all the layers of the same size, but use means other
than the layer size to obtain a compression and a contraction. We know that the denoising criterion
automatically yields a contraction (Alain and Bengio,2013)), so we do not need to impose an explicit
one, although it might be interesting to experiment with alternative ways to encourage contraction,
such as the contraction penalty of contractive auto-encoders (Rifai ez al., 2011).

If we keep all the latent layers of roughly the same size, then we might want to have either the
encoder or the decoder equipped with an intermediate hidden layer that is not considered to be
part of the set of latent layers h;. Instead, such an intermediate hidden layer would simply be
considered as part of the computation for the layer-wise encoder or decoder, e.g., the encoder is an
affine+rectifier transformation and the decoder is an MLP, or vice-versa. We also have indications
that if one fixes the decoder (e.g., to some parametric transformation), then the generally optimal
encoder is non-parametric (and can be obtained via an optimization, like in sparse coding). Since
an optimization is computationally expensive, we could replace it by a high-capacity MLP. If the
encoder or the decoder is an MLP, then we still have to use back-prop internally to train it, but we
know that training a shallow neural network by back-prop with gradient-based optimization works
well, so this is not a big concern.

Then the question is whether it should be the encoder or the decoder that is equipped with a higher
capacity (and internal hidden layer), or both. This question should be determined experimentally,
but a practical concern is that we would like the recognition path to be fast (and so would brains), in
order to be able to make fast inference and quick decisions. That suggests that the encoder should be
a “simple” non-linear transformation (like the usual neural network layer) while the decoder should
be an MLP, but this should be resolved experimentally.

8 About the Top-Level Auto-Encoder and Avoiding a Top-Level MCMC to
Sample

8.1 Linear Top-Level Auto-Encoder

In the special case where the top-level is linear, training it to minimize denoising reconstruction
error estimates a multivariate Gaussian prior for P(hy_1). One can readily verify that the optimal
denoising reconstruction function minus the input hz,_; behaves similarly to the gradient of the log-
likelihood, ¥~ (hz,_1 — u), which pushes back towards the mean in a stronger way in directions
of smaller eigenvalue. However, note how the true gradient blows up if some eigenvalues are 0,
unless hy,_1 happens to be already lying on the allowed manifold. But even in that case, we get a
numerically unstable result, dividing a O (the projection on the 0-eigenvalue direction) by a 0 (the
eigenvalue with value 0). Any slight perturbation of i _; would throw this off. On the other hand,
one would clearly get a stable reconstruction if the system is trained as a linear denoising auto-
encoder, because it always sees a numerically bounded reconstruction target, and is trained with
stochastic variations of hy,_1 in the first place.

17



Viewing the top-level auto-encoder as a Gaussian however has the advantage that one can replace the
MCMC sampling scheme of general denoising auto-encoders by the analytic sampling scheme of a
Gaussian. The auto-encoder weights can be mapped to the Gaussian covariance (and the biases to the
mean) by a simple calculation. However, it is unlikely that every input distribution can be mapped
to a Gaussian distribution, simply because we know that there are discrete factors typically involved
(e.g., multiple disjoint manifolds). What really makes the Gaussian easy to sample, though, is that
it affords a completely factorized representation, where the factors are statistically independent of
each other.

8.2 Factorial Top-Level Prior Instead?

Hence if we can map to a factorized top-level distribution (possibly with both discrete and contin-
uous variables), then we can generate (x, h) through completely ancestral sampling, where each
step is exact, rather than having to rely on an MCMC for the top level. One interesting question is
whether every “reasonable” distribution can be mapped through a generally non-linear but invertible
transformation into a completely factorized one (and what “reasonable” then entails).

Note that the top-level auto-encoder does not have a prior that regularizes its code layer, unlike the
lower auto-encoder layers. This is equivalent to saying that the top-level prior has a zero gradient,
meaning that it has a constant probability, i.e., a completely flat probability distribution, such as the
uniform or a large variance Gaussian. Forcing a top-level uniform distribution may be too strong,
and it seems that a weaker assumption is that the top-level prior is simply factorial. As discussed
above, that makes generative sampling very easy and also makes it more likely that the top-level
factors have some intrinsincally interesting meaning that can be revealed through visualizations.
The idea would thus be that the top-level prior is not really an auto-encoder, or is a “diagonal” one
that reconstructs every unit hy, ; separately given itself.

If we choose the top level to be an arbitrary factorial distribution, then instead of doing a reconstruc-
tion in order to estimate %PLU‘L), we can just compute analytically this derivative, for continuous
hidden units. What should the equivalent target be for discrete top-level variables? A plausible an-
swer is that the target reconstruction for a discrete unit taking values in some set .S should simply
be the mode of that discrete distribution. If the unit is binary, it just means that the reconstruction is
either equal to the input or to its complement, whichever is most probable. One worrysome aspect of
this is that when we do this on every bit of the top level discrete units, we get a target reconstruction
that may be very far from the actual output. Maybe we should have a stochastic reconstruction,
which moves away from the current input values, with a propability (for each direction separately)
that is proportional to the ratio of the probability of the mode to the current input?

8.3 Parzen Top-Level Instead

Another interesting possibility is to make the top level of the hierarchy a Parzen distribution, with a
regularizer that pushes the variances of each component to be as large as possible.

The “reconstruction” of an example x, seen as hy, is then basically a linear combination of the
nearest neighbors, weighted by their relative component probability. More precisely,

1 e —pgl1?
o2

P(hyr) ocz e 2

1 llhp—ngll?
2

e o2
Wi = NETE
et
8logP(hL) (,u,; 7hL)
—— ,y = 1
e D wit—s (16)

%

where p; are the Gaussian means, i.e., a set of training examples excluding hy, and o is the band-
width of the Parzen windows.

This should push A, towards the nearest mode as estimated by the Parzen
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8.4 MAP vs MCMC for Missing Modalities and Structured Outputs

An interesting observation is that the noise-free target propagation provides an easy way to per-
form MAP inference in the case of missing modalities or structured outputs. Indeed, if we take
h L—1 — hr—1 as pointing in the direction of the gradient of log P(hy,_1) (or towards a more prob-
able configuration, in the discrete case), then local ascent for MAP inference can be achieved as
outlined in Algorithm [5] by iteratively encoding and decoding at the level of hz_; with the deep
auto-encoder sitting on top of hr_1. This will correspond to a local ascent to estimate the MAP, in
the space of hy,_1.

Algorithm 5 MAP inference over some subset of a representation h(erfismg) (e.g. associated with

a structured output target y, or some missing modalities), given the rest, h(LOESlerVEd) (e.g., associatd

with an input z, or some observed modalities).

(observed)
hL -1

Compute for the observed parts of the data, through their respective encoder functions.

Initialize 7™
repeat
Let hy_1 be the reconstruction of the top-level auto-encoder (with no noise injected) taking
iy = (hiePserved) p(missing)y o ¢ input,

Update hl(TiSSing) = E(erfismg) while keeping the observeEd pgrts)ﬁxed.
thfilismg

(e.g. to some mean value, preferably set to be 0 by construction).

until a maximum number of iterations or convergence of

Map hr_1 deterministically back into the data space through the associated decoder functions.
Return the resulting predicted missing values.

In general, we are not interested in finding the global MAP configuration,
argmax;,,  log P(hy_1)

but rather a conditional MAP, e.g., if we want to predict the MAP output given some input, or
if modalities are observed while others are missing and we want to infer a probable value of the
missing ones:
(missing) |; (observed)
ATGIMAX, (missin) log P(hy |hy ). (17)

(observed)
L

This can be achieved simply by clamping the h; to their observed values and only update the

h(LHfismg) in the encode/decode iterations. As discussed above, the target associated with a subset
of the elements of h can be interpreted as a gradient, so changing only those while keeping the
others fixed amounts to a form of gradient ascent for the missing components given the observed

components.

Interestingly, the MCMC version is structurally identical, except that noise is injected in the process.
By controlling the amount of noise, we actually interpolate between a MAP-like inference and an
MCMC-like posterior sampling inference. Note that in many applications, we care more about MAP
inference, since a specific decision has to be taken. However, starting with an MCMC-like inference
and gradually reducing the noise would give rise to a form of annealed optimization, more likely to
avoid poor local maxima of the conditional probability.

9 Conclusions, Questions, Conjectures and Tests

In this paper we have proposed a radically different way of training deep networks in which credit
assignment is mostly performed thanks to auto-encoders that provide and propagate targets through
the reconstructions they compute. It could provide a biologically plausible alternative to back-prop,
while possibly avoiding some of back-prop’s pitfalls when dealing with very deep and non-linear or
even discrete non-differentiable computations.

This approach derives primarily from the observation that regularized auto-encoders provide in their
reconstruction a value near their input that is also more probable under the implicit probability model
that they learn.
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This approach has first been derived from a training criterion that tries to match the joint of data and
latent representations when they are generated upward (from the data generating distribution and
upward through the encoder) or downward (from the learned generative model, and mostly going
down through the decoders). This criterion is equivalent to the variational bound on likelihood that
has previously been used for graphical models with latent variables.

This paper discusses how this idea can be applied to a wide variety of situations and architectures,
from purely unsupervised and generative modeling to supervised, semi-supervised, multi-modal,
structured output and sequential modeling.

However, many questions remain unanswered, and the main ones are briefly reminded below.

1.

Can we Prove that a Denoising Auto-Encoder on Discrete Inputs Estimates a Recon-
struction Delta that is Analogous to a Gradient? We already know that reconstruction
estimates the log-likelihood gradient of the input for denoising auto-encoders with small
noise and continuous inputs. What about larger noise? Is there an analogous notion for
discrete inputs? A related question is the following, which would be useful to answer if we
want to have a factorial top level. What would be an appropriate reconstruction target
in the case of a factorial discrete distribution?

. Are we Better Off with a Factorial Top-Level or with a Denoising Auto-Encoder Top-

Level?

Related to the previous question, how should we parametrize the top level? An explicit
top-level factorized distribution is advantageous because one can sample analytically from
it.

. Can we Prove that Algorithm[T]is a Consistent Estimator, with Enough Levels?

If we provide enough levels, each with dimension of the same order as the input, and if we
train each level according to Algorithm |1} are there conditions which allow to recover the
data generating distribution in some form?

. Do the Level-Wise Targets Help?

In Algorithm[Tor [ we have targets at each layer and we could back-propagate the associ-
ated targets all the way or we could only use them for updating the parameters associated
with the corresponding layer. Do the intermediate targets make back-prop more reliable,
compared to using only back-prop? (in the generative case the comparison point would be
the variational auto-encoder, while in the supervised case it would be the ordinary super-
vised deep net).

. Can Back-Prop Between Levels be Avoided Altogether? Following up on the previous

question, can we use only the propagated targets and no additional back-prop at all (between
layers)? We might still want to use back-prop inside a layer if the layer really is an MLP
with an intermediate layer.

. Can Every Reasonable Distribution be Mapped to a Factorial One? Is there a transfor-

mation f(z), not necessarily continuous, that maps = ~ Q(X) to h = f(x) such that the
distribution of 4’s is factorial, for any or a very large class of data distributions Q(X)?

. Is Nearest-Neighbor Reconstruction Yielding Better Models? Instead of reconstructing

the clean input, Section [2.2.8|proposes to reconstruct a near neighbor from the training set,
minimizing the discrepancy between the representations of the near neighbors in represen-
tation space. Since that was the motivation, does that approach yield better mixing and
more accurate generative models?

. How to Handle Ambiguous Posteriors? In this paper we have not addressed the question

of ambiguous posteriors, i.e., the the data is really generated from factors whose value
cannot be completely recovered from the observation x itself. A natural way to handle
such ambiguity would be for the encoder to be stochastic, like in the variational auto-
encoder (Kingma and Welling, 2014; Rezende e al., 2014), but more thought is needed to
consider what this entails.

. Encoder or Decoder as MLP, Neither, or Both? Each layer of the proposed architecture

does not have to be the traditional affine layer (composed with point-wise non-linearity). It
could be more powerful, e.g., it could be an MLP with its own hidden units. Should we use
such powerful layers at all? in the encoder? in the decoder? in both?
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10. Is Corruption Necessary in the Lower Layers? When training a deep network such
as discussed here, should we limit the injection of corruption to the upper layers only
(which capture the stochastic aspect of the distribution), while keeping the lower layers
determnistic? Instead of a denoising criterion to achieve contraction in the lower layers, an
explicit contractive penalty could be used.

11. Can a Recurrent Network be Trained to Capture Longer-Term Dependencies by
Target-Propagation then by Back-Propagation?
Can the idea of propagating targets (obtained as reconstructions) be used to replace back-
prop for training recurrent nets to capture long-term dependencies?
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