DCCK & more

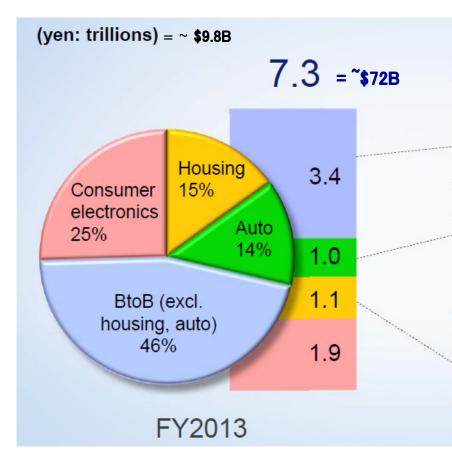
luca@psvl

agenda

- Panasonic
- PSVL
- DL@PSVL
- DCCK
- Q&A

Panasonic

Company Overview


President	Kazuhiro Tsuga
Foundation	March, 1918(incorporated in December, 1935)
Net Sales*	7,303.0 billion yen = ~\$72B
Number of Employees*	293,742
Number of Consolidated Companies*	538 (including parent company)

*as of March 31, 2013

Brief History

1918	Konosuke Matsushita founded Matsushita Electric Housewar Sales of the Company's first product, an improved attachmer	
1927	The "National" brand name was registered.	
1935	The Company was reorganized and renamed Matsushita Electric Industrial Co., Ltd.	National
1949	The Company's shares were listed on the Tokyo Stock Exchange and the Osaka Securities Exchange.*	
1951	The Company's shares were listed on the Nagoya Stock Exchange.	
1959	Matsushita Electric Corporation of America was established. Following this move, the Company established bases in other parts of the world.	
1971	The Company's shares were listed on the New York Stock Exchange.*	-
2002	The Company made Matsushita Communication Industrial Co., Ltd., Kyushu Matsushita Electric Co., Ltd., Matsushita Seiko Co., Ltd., Matsushita Kotobuki Electronics Industries, Ltd. and Matsushita Graphic Communication Systems, Inc. into wholly-owned subsidiaries.	
2003	The Company adopted a business domain-based organizational style through restructuring. The Company made Matsushita Electronic Components Co., Ltd. and Matsushita Battery Industrial Co., Ltd. into wholly-owned subsidiaries.	
2004	The Company made Matsushita Electric Works, Ltd. (later renamed Panasonic Electric Works Co., Ltd.), PanaHome Corporation and their subsidiaries into consolidated subsidiaries.	
2008	The Company changed its name from Matsushita Electric Inc to <u>Panasonic Corporation.</u> The Company planned to unify its "Panasonic" name across the world.	
2009	The Company made SANYO Electric Co., Ltd. and its subsidia	ries into consolidated subsidiaries.
2011	The Company made Panasonic Electric Works Co., Ltd. and wholly-owned subsidiaries.	SANYO Electric Co., Ltd. into
2013	The Company restructured its Group organization, and introc a <u>4 Divisional Company system on April 1.</u>	duced divisional management and

But, B2B sales are higher now

BtoB (excl. housing, auto)

ICT device, industrial equipment Avionics, lighting for commercial use, cold chain equipment, business PC, ...

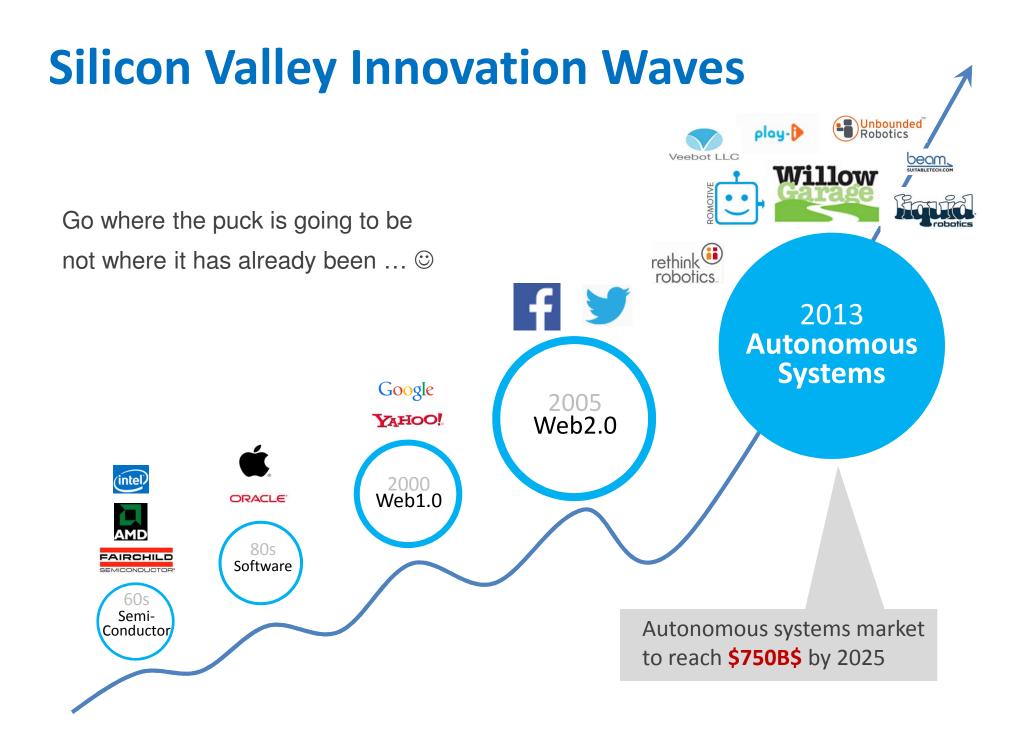
Auto

Car navigation, car AV equipment, battery, sensor, camera, ...

Housing

Exterior, building materials, building equipment, electric equipment, housing (PanaHome), ...

PSVL


Last standing building ③

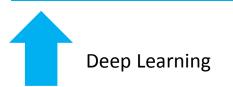
Cupertino

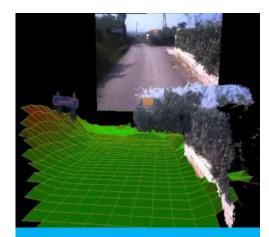
Apple Spaceship

PSVL

Autonomous Systems Platforms

Common Technology Platform unifies three huge new markets

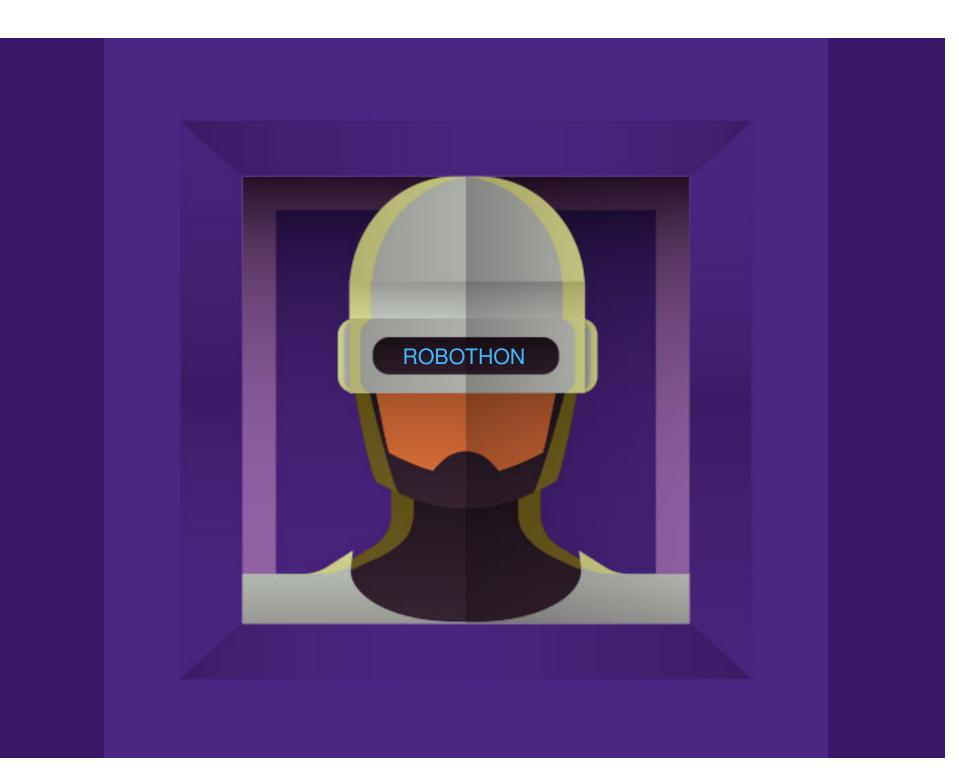


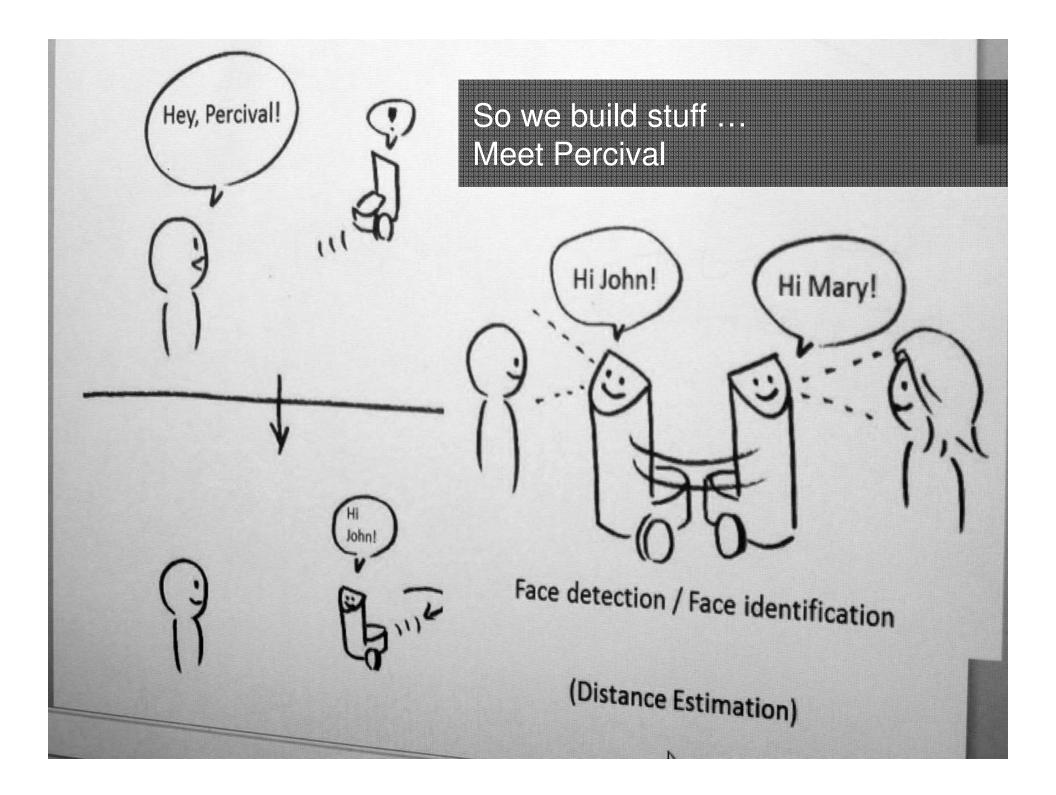

Autonomous Systems Technology Stack

Identifying Technology Opportunities for Autonomous Systems

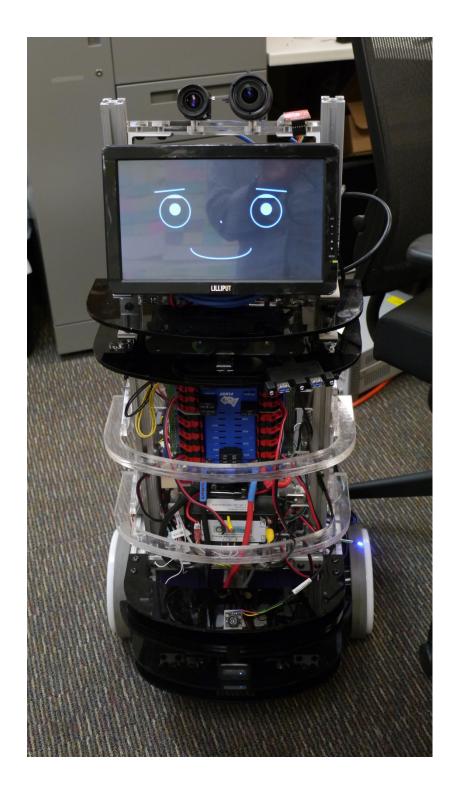
Perception Object Detection, 3D Environment Modelling, Traffic Sign Recognition

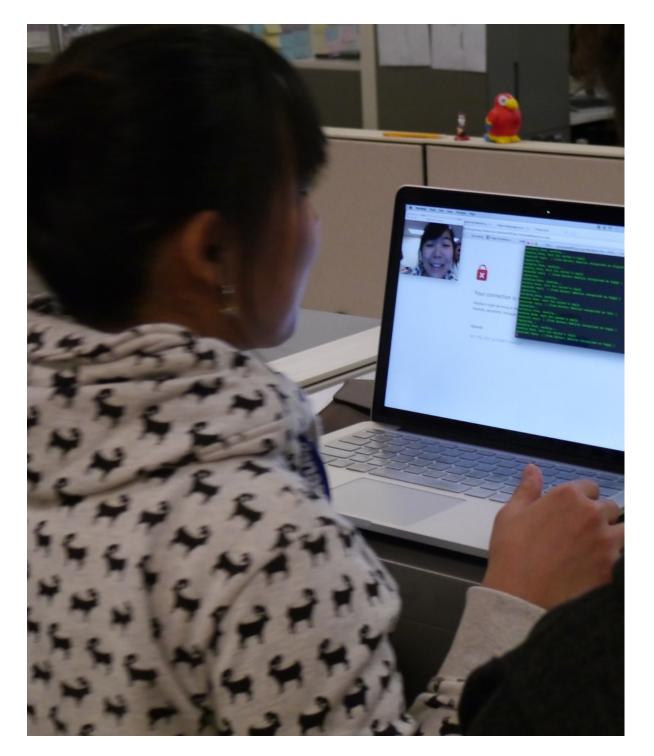
Planning Sensor Fusion, Path planning, Trajectory planning


Actuation Breaking, throttle, steering and motion


steering and motic control

Applications on Learning in Planning & Actuation





VisualizationSoundFace Recognition & Depth PerceptionSpeechConvenienceTouchEmotion Recognition

- 'Hey percival' Robot turn to face person when called.
- Souvenir photo 'say cheese' interaction, saves photo.
- Integration

Emotional face recognition program that recognized when the person was angry, disgusted, scared, surprise, contempt sad or happy

DL@PSVL

A big thanks to LISA!

- You open source stance is helping making the world a better place ⁽²⁾
- We are active users of Theano, Pylearn and Ground-Hog
- Also we are users of BV CAFFE ...

We work on

- Vision, with strong emphasis towards robotics and autonomous drive
- Language specifically NLU (robotics too) and MT (Japanese is a focus here)

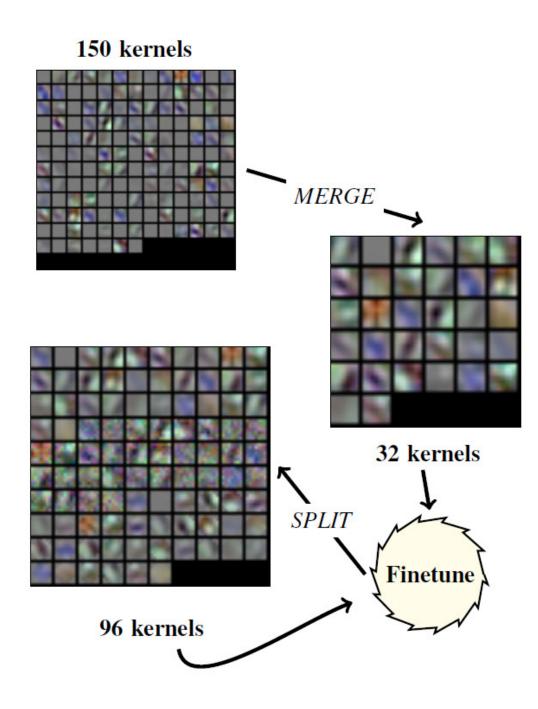
DCCK

Architecture, architecture, architecture

- Architecture very important for performance
- Usually architecture is optimized by hand
- Can we find a way to optimize architecture automatically?
- Also, why can't we vary architecture during training?

Optimizing Architecture

- It's hard, it's combinatorial
- But this is no excuse to just doing it manually
- And there are successful attempts in the past, also in other model typologies (HMM's)
- More recently teacher/student, darkknowledge and FitNets approaches (related)


DCCK

Deep Clustered Convolutional Kernels Key point: vary architecture during training

1. Start from over-parameterized model

this has been shown to be easier to train but provides lots of redundant filters, excessively large model which possibly over-fit

- 2. Merge convolutional filters by clustering
- 3. SGD
- 4. Split convolutional filters and repeat

- Questions?
- How to split?
- How to merge (k-Means)?

Merging

Purpose: remove redundancy

- 1. Cluster filters layer by layer, starting from the lower layer
- 2. Use cluster of the lower layer to constrain clustering of the following layer
- 3. Repeat for every convolutional layer in the network *
- * Potential issue was observed with the last convolutional layer, before the FC layer

Splitting

Purpose: increase parameters

Use filter transformations that are inherent to the problem we are trying to model

For instance, in our case we use rotation, jittering and additive Gaussian noise

Experiments

Start from our best systems and best architecture (close to SOA) and see if we can improve architecture & accuracy

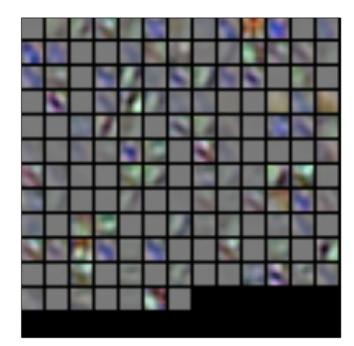
Tested on three vision benchmarks: MNIST, GTSRB, CIFAR10

MNIST sanity check

- Train our to convergence
- Merge/split (only first layer) and compare with same size, shows good promise

No.	STAGE	conv1	conv2	Err(%)
1	ORIGINAL	100	50	0.82
2	ORIGINAL	200	50	0.78
3	ORIGINAL	300	50	0.75
4	SPLIT FROM [1]	200	50	0.58
5	MERGE FROM [4]	100	50	0.59

GTSRB


German traffic sign recognition benchmark

We have a SOA system based on 3-DNN's (ensemble, similar to IDSIA system)

We also have a smaller / faster 1-DNN SOA system

GTSRB - filters

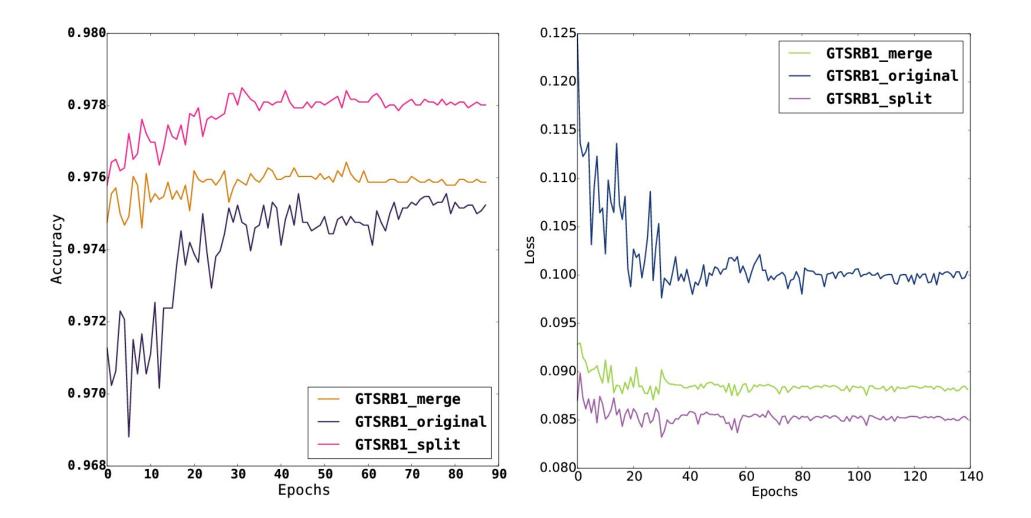
Conv1 initial: lots of redundancy

merge

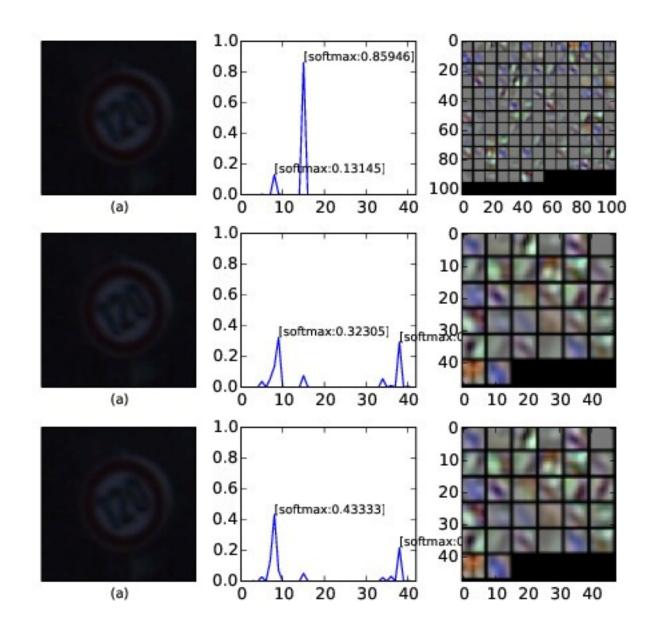
Split: rotation/jitter & noise

GTSRB – 1-DNN

No.	STA	AGE	CONV	1 CON	vv2	CONV	3 Err(%)
1	ORIC	INAL	150	15	50	250	2.44
2	MERG	GE [1]	32	1.	50	250	2.34
3	MERG	GE [2]	32	3	2	250	2.7
4	MERG	Ge [2]	32	6	4	250	2.36
5	MERG	Ge [3]	32	3	2	32	3.82
6	SPLI	т [2]	64	1.	50	250	2.5
7n	SPLI	т [3]	32	6	4	250	2.25
8r	SPLI	т [3]	32	6	4	250	2.15
9	SPLI	т[1]	300	15	50	250	2.24
10	MERC	GE [1]	40	1.	50	250	2.31
11	SPLI	т[1]	150	30)0	250	2.27
Mode	EL	STA	GE	conv1	CO	NV2	SPEED(MS)
1. sim	IPLE	ORIG	NAL	150	1.	50	14.8
2. SIM	PLE	MERG	E [1]	32	1:	50	14.1
3. sim	IPLE	MERG	Е[2]	32	6	64	12.6
4. 3-E	NN s	ORIG	NAL	150	1:	50	27.9
5. 3-E	NN S	MERG	Е[4]	32	1:	50	19.4


* Same accuracy 2x or improved accuracy

GTSRB – ensemble


Smaller ensemble architecture with improved accuracy

No.	STAGE	conv1	conv2	conv3	Err(%)
1	ORIGINAL	150	150	250	1.24
2	ORIGINAL	16	150	250	1.67
3	MERGE [1]	32	150	250	1.18
4	MERGE [1]	16	150	250	1.25
5	SPLIT [1]	300	150	250	1.21
6	SPLIT [3]	64	150	250	1.15

GTSRB plots

GTSRB - outlier

* Initially mis-classified, after merging. jittering (rotation) and SGD is correctly classified

CIFAR-10

* Small improvement

No.	STAGE	conv1	conv2	conv3	Err(%)
1	ORIGINAL	192	192	192	10.4
2	SPLIT [1]	384	192	192	10.29
3	SPLIT [1]	576	192	192	10.25
4	MERGE [3]	192	192	192	10.2
5	SPLIT [1]	192	192	384	10.04
6	SPLIT [1]	192	384	192	10.04
7	MERGE [6]	192	192	192	10.28

Self critique

- Would be good to show we can converge to good architecture when starting from random architecture (or basic architecture)
- Should compare (or combine?) with teacher/student methods
- Scale up and test on large datasets

MT&NLU

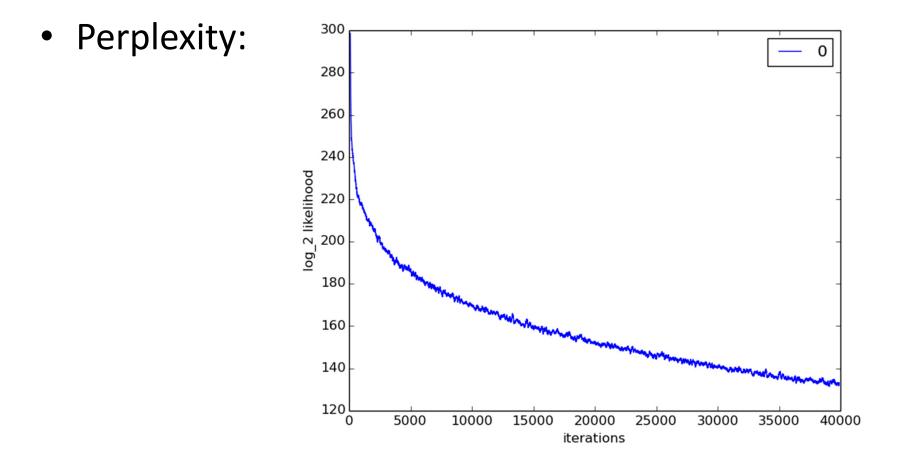
Machine Translation

- RNN systems provide competitive performance while avoiding a huge chain of component (word segmentation, Tagging, reordering)
- Problematic:
 - RNN Systems require large models or/and limitation of lexicons are required
- Goal:

Study the impact of the tokenization in RNN for JP-EN

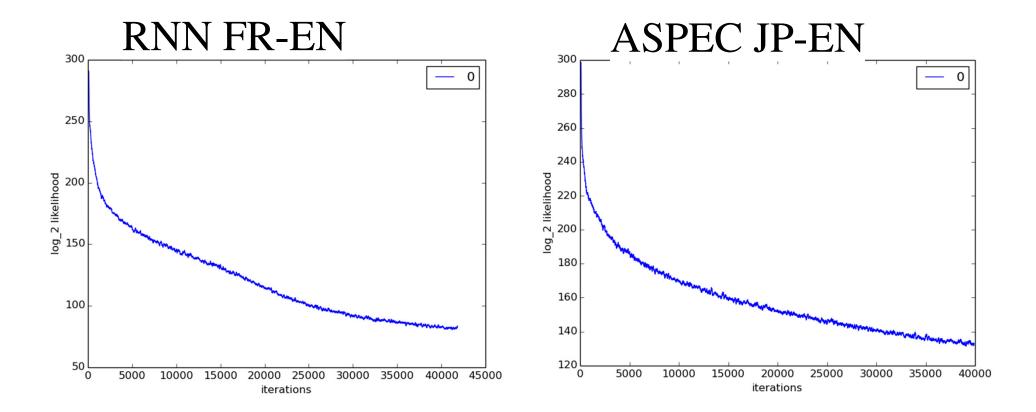
Machine Translation JP-EN

- Tokenization: An issue in Japanese
 Lot of tools try to solve this issues
- Proposal:
 - Remove tokenization and lets the model learn it
- Benefit:
 - Avoid OOV words in Japanese?


Machine Translation

- Corpus ASPEC:
 - 3 millions of parallel sentences from abstract of scientific English-Japanese papers.
- ASPEC campaign:
 - Baseline systems (online system + Organizer baseline) are between ~ 11 and ~15 of BLEU
 - Best system without external data: 23.5 BLEU (Travatar-based Forest-to-string)

Machine Translation – 1st experiment


- Experiment:
 - 2*RNNs Decoding-Encoding
 - Lexicon Input (JP): 3333 words (no tok.)
 - Lexicon Output(EN): 40000 words
 - Embedding vector dimension: 1000
 - Titan Black:
 - Memory usage: between 1.6 Gb and 4.5 Gb

Machine Translation ASPEC JP-EN

Slower convergence than FR-EN ... but still works!

Machine Translation JP-EN/FR-EN

Machine Translation JP-EN/FR-EN

• Some examples:

S:本論文では,多成分非理想係気液平衡問題の新しい計算法を提案する。

T: This paper presents a new computation procedure for multicomponent nonideal vapor - liquid equilibrium problems.

O: This paper proposes a new calculation method for the problem solving the problem of the boundary condition.

S: 最小検出歪みは10-5であった。

T: As a result, it was found that its minimum detection strain was 10 - 5.

O: The minimum detectable strain was found to be 10 - 5.

S:多層薄膜による各種のセンサを実現しているとした。

T: Various sensors have been realized with multilayer thin films .

O: Various sensors by multi - layer thin films have been realized .

S: 1995年3月,マリアナ海溝最深部10,911mに着底し,初期の性能を実証した。

T: In March , 1995 , it was successful in landing on the deepest bottom of 10911m of the Mariana Trench , and its expected performance was proved .

O: In March 1995, the UNK Trough was exposed to the depth of 10, UNK and the initial performance was verified.

Machine Translation JP-EN/FR-EN

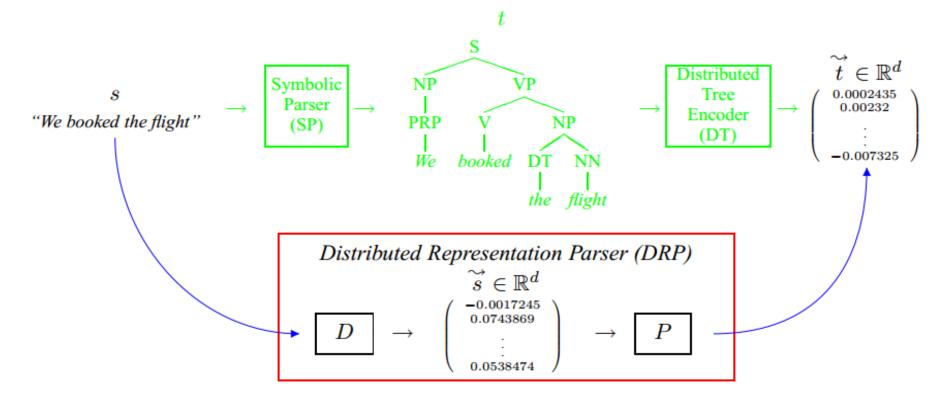
- Some issues with acronyms and rare example:
 - 10,911m -> 10,UNK
 - Chemical formula:
- But easily recoverable

S: ... けるSm2Fe17N3磁 ... T: ... of Sm2Fe17N3 magnets ... O: ... of UNK UNK magnets ...

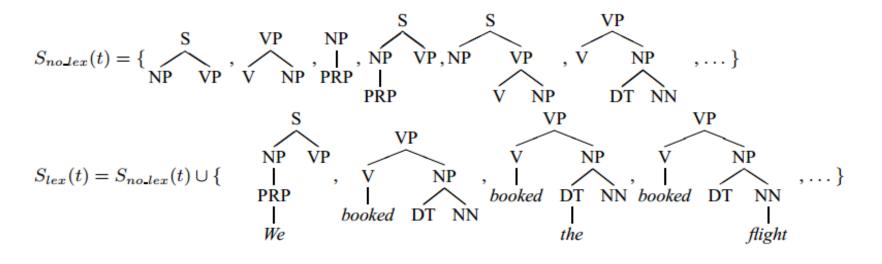
- Some sentences are rotated:
 - Grammatical structure of Japanese is inversed with the English
 - More frequent for long sentences

Machine Translation – 1st experiment

- Results:
 - 17 of BLEU on "raw output" without post-processing (just 12 best Beam search decoding)
 - Better than the baseline, maybe + 4BLEU with post processing
- Actual work:
 - Confusion Network decoding with RNNLM
 - Acronym or rare examples recovery
- Parallel model for OOV?
- Combination of Tree based method? Distributed Tree Kernel?

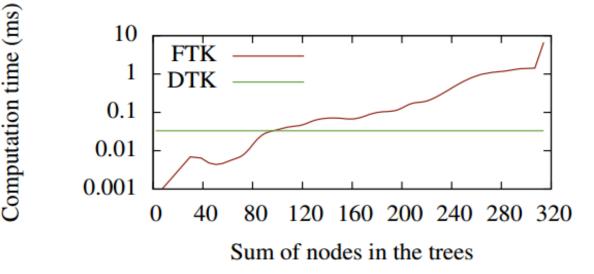

• Goal:

Reduce the time and the complexity of tree kernel

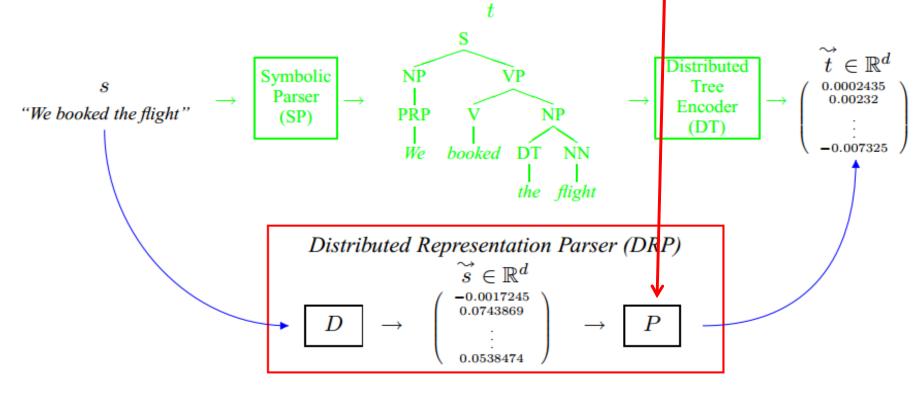

- from University of Rome, Prof. Zanzotto (ICML'13)
- Applications:

– Question classification, Textual entailment....

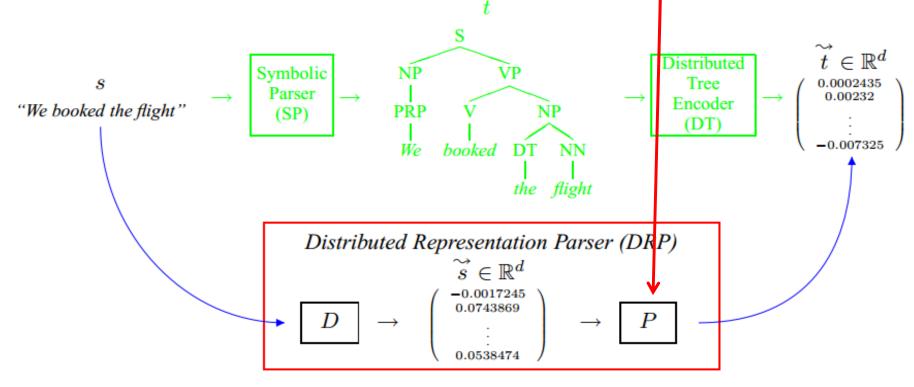
• Encoding of the morphosyntactic structures:



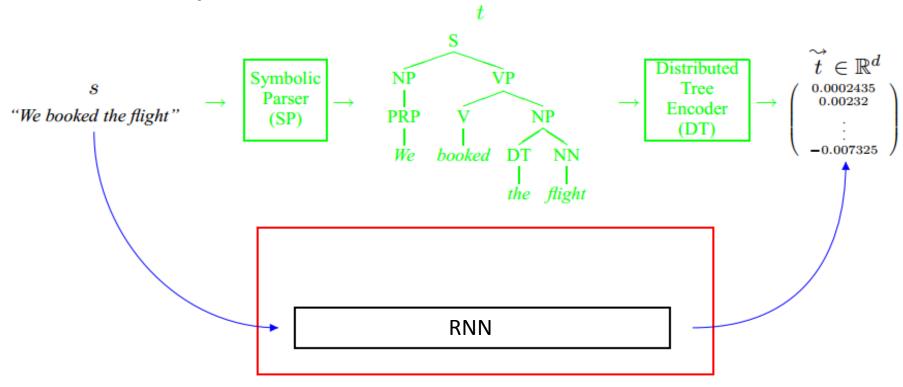
• Encoding of the morphosyntactic structures:



• With or without lex


- Vector dimensions of s:
 - 4096 or 8192 with an average similarity up to 90 compare to state-of-the-art method
- Computation efficient:

• But a lag in matrix transformation



• But a lag in matrix transformation

• Replace P by a Encoder-Decoder

• Next step:

• Distributed RNN?