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For your information. . .

In English

◮ Last name: Cho

◮ First name: Kyunghyun or Kyung Hyun

In Korean,



Montreal ⇐⇒ Helsinki



Aalto University and ICS Department

Aalto University was founded in 2010 by merging

1. Helsinki University of Technology

2. Helsinki School of Art and Design

3. Helsinki School of Economics

Department of Information and Computer Science (ICS)

1. Theoretical Computer Science

2. Information Science: where I’m at



Neural Network Research at Aalto: Earlier Time

Long, long time ago ( - 1994)

80’s

◮ (Kohonen, 1982) Self-Organizing Map

◮ (Oja, 1982) Neural Principal Component Analysis

The Neural Networks Research Centre (1995 - 2005)

90’s – early 2000’s

◮ (Oja, 1991) 5-layer Autoencoder for Nonlinear PCA

◮ (Valpola, 1996) Sparse coding

◮ (Hyvärinen et al., 2001) Independent Component Analysis

The Adaptive Informatics Research Centre (2006 - 2011)

Finnish Centre of Excellence in Computational Inference Research (2012 - 2017)



Dark Age started by taking Bayesian treatment too seriously on deep neural

networks. . .

(Raiko, 2001)

◮ Raiko later said, ”we should’ve used point-estimates for parameters”



Machine Learning Other than Neural Networks

Diverse resarch areas

◮ Bioinformatics: Prof. Sami Kaski, Prof. Lähdesmäki...

◮ Image and Information Retrieval: Dr. Jorma Laaksonen...

◮ Industrial Applications: Dr. Amaury Lendasse...

◮ Multi-view, Multi-task Learning: Prof. Sami Kaski, Dr. Jaakko Peltonen...

◮ Speech Recognition: Prof. Mikko Kurimo, Dr. Kalle Palomäki

◮ Non-negative Matrix Factorization: Prof. Erkki Oja, Dr. Zhirong Yang...

◮ Bayesian PCA: Dr. Tapani Raiko, Dr. Alexander Ilin...

◮ and so on...

It’s only neural networks that went through the dark age.



Neural Networks performs Inference

Some alternative views of neural networks:

1. Nonlinear function approximator (supervised)

2. Multi-layered feature extractor (unsupervised)

3. Fast inference engine



Example: RBM vs Autoencoder

x1 x2 xp

h1 h2 hq

RBM Autoencoder

Inference E [h] = σ
`

W⊤x
´

h = σ
`

W⊤x
´

Generation E [x] = σ (Wh) (h ∼ B (E [h])) x = σ (Uh) (often, U = W)

Learning Maximum Likelihood Minimum Reconstruction

Stochastic Deterministic*

An RBM is a probabilistic model of which inference and generation can

correspond exactly to the feedforward computation of a neural network.

* I acknowledge that Yoshua may disagree.



Example: Sigmoid Belief Net* as a Stochastic Autoencoder
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h1 hq

SBN Autoencoder

Inference Feedforward + Sampling Feedforward

Generation Feedforward + Sampling Feedforward

Learning Variational Lower-bound Minimum Reconstruction

Difference Stochastic Deterministic

* This argument is strictly limited to the case of training a sigmoid belief network with

wake-sleep algorithm (Hinton et al., 1995)



However, it all breaks down with Deep Boltzmann Machines. . .

Let’s assume that it’s still early 2013, before Goodfellow et al.’s work on DBM and

Bengio et al.’s work on GSN.

Inference in DBM requires both bottom-up and top-down signals:
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This does not correspond well with any feedforward neural network.



Can we use this mismatch to our advantage?

Let’s further assume that no one knows whether the centering trick works well on large

DBMs yet and that everyone wants to train a DBM.

Deep Belief Network Deep Boltzmann Machine
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Few motivations:

◮ We can train directed models well either with or without pretraining

◮ Except for the directedness of arrows, DBM and DBN look same

◮ We believe that DBN extracts a good abstract concept of an input



Two-Stage Pretraining Algorithm

1. Train a deep belief net (or a deep autoencoder)

2. Fit the posterior of a DBM to the posterior from the DBN

3. Continue finetuning

xxx x̃

h[1] h[1]

h[2]h[2]h[2]

h[3] h[3]

h[4]h[4]h[4]

Stage 1 Stage 2 Finetuning

◮ In fact, you can simultaneously perform Stage 1 and 2

◮ Though, failed to find anyone who likes this idea so far



Disclaimer

I miserably failed the course “Statistical Natural Langauge Processing” in

2010. Other than those dealt during the first two lectures of the course my

knowledge about natural language processing has been close to nil. Hence, I

do not guarantee that the following materials will eventually turn out to be

either novel, meaningful, interesting or worth spending your hours.



Statistical Machine Translation from Scratch

Generative model Mt for a language Lt = {s0, s1, . . . }:

1. Select a component from a cateogorical distribution

c ∼ C(p)

2. Generate a sequence from the selected stochastic process

s = (s0, s1, s2, . . . ) ∼ LP t(θc)

Note that

◮ p is independent of a language

◮ But, LP t is dependent on a language



Statistical Machine Translation from Scratch

Machine translation between Ls and Lt in two steps:

1. Find the most likely concept of a source sentence

ĉ = arg max
c

p (c | ss,Ms)

2. Find the most likely sentence of a target language

ŝ = arg max
s

p (s | θĉ ,Mt)



Approaching it by Neural Networks

Machine translation between Ls and Lt in two steps:

1. Inference An encoder extracts ẑ from ss of length K

z
k+1 = f (sk+1

s , z
k ), t = 0, . . . ,K − 1

ẑ = z
K

2. Generation A decoder biased with z generates st

s
k+1
t ,h

k+1 = g(skt ,h
k
, ẑ) until s

k+1
t = 〈stop〉

Note that

◮ ẑ is ĉ

◮ The encoder and decoder may be trained jointly



Current Challenges

1. Is this a right approach?

2. Isn’t it too hard. . . ?

3. Is the choie of Recurrent NNs right?

4. This is an extremely deep NN with a tiny bottleneck. Is it even possible to

train it well?

5. . . .



Far beyond: will machine learning prove P = NP or P 6= NP?

Decision problems in NP*: Binary classification with N-dim binary input

Assuming that trainining time of a classifier is O(M) with M training samples:

◮ How many samples do we need to train a classifier that classifies

NP-complete problems with ǫ error?

◮ Is M polynomially bounded with respect to N?

◮ Is obtaining M training samples bounded polynomially with respect to N?

The solution must be verifiable in polynomial time.
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