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Abstract

We replace the Hidden Markov Model (HMM) which is traditionally used in in
continuous speech recognition with a bi-directional recurrent neural network en-
coder coupled to a recurrent neural network decoder that directly emits a stream of
phonemes. The alignment between the input and output sequences is established
using an attention mechanism: the decoder emits each symbol based on a context
created with a subset of input symbols selected by the attention mechanism. We
report initial results demonstrating that this new approach achieves phoneme er-
ror rates that are comparable to the state-of-the-art HMM-based decoders, on the
TIMIT dataset.

1 Introduction

Speech recognition is challenging because it has to transform a long sequence of acoustic features
into a shorter sequence of discrete symbols such as words or phonemes. Not only is the problem
difficult because the two sequences are unequal in length, but also because the precise location of
the output symbol in the input sequence is often not known in advance. Therefore, there is no
straightforward way of building a classifier that predicts a target for each frame of the input signal.
The speech recognition model must instead learn to both align the output sequence to the input
sequence and to recognize the content of the utterance.

The model investigated in this work is a Recurrent Neural Network (RNN) that can be trained
without an explicit alignment between the input and output sequences. When decoding, the model
keeps track of its position in the input sequence through an attention mechanism. At each step of
decoding, the model first scores all input frames against its hidden state to soft-select relevant input
frames. Next, it summarizes the selection into a context vector and uses it to update the hidden state
and generate the next output symbol.

This model achieves a phoneme error rate of 18.57% on the TIMIT dataset, which is comparable to
the state-of-the art DNN-HMM systems but slightly worse than the best reported error rates obtained
using RNNs. However, it should be noted that this model is very easy to apply: it requires a narrow
beam search, and we found that its accuracy deteriorates very slightly when greedy search (i.e.
taking the most likely symbol at each time) is used for recognition. It is also easy to implement and
tune (less than a month of work was enough to achieve these results).
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1.1 Background

It is possible to obtain the training target for each frame of the acoustic input by coupling a neural
network to a Hidden Markov Model (HMM) (Bengio et al., 1992; Bourlard and Morgan, 1994;
Bengio, 1996). In this hybrid system the neural network acts as an acoustic model by predicting the
state of the HMM from each corresponding input frame. Since a target is provided for each input
frame, we can train the neural network in a usual way by minimizing the classification error. Once a
per-frame classifier is trained, the whole system including the acoustic model and the HMM can be
tuned jointly on full sentences to minimize the decoding error (LeCun et al., 1998; He et al., 2008;
Vesel et al., 2013). This hybrid approach has recently made important progress by adopting, as
an accoustic model, deep neural networks such as fully-connected feedforward neural networks (A
Mohamed et al., 2009; Hinton et al., 2012a), convolutional networks (Sainath et al., 2014), and
recurrent networks (RNN, Graves et al., 2013a).

The hybrid architecture (NN-HMM) is, however, rather complicated and requires controlling the
relative contribution from each part of the model to the decoding error. Moreover, training needs
to be performed in multiple stages, beginning with a hybrid architecture having Gaussian Mixture
Model (GMM) and HMM which is used to generate per-frame target states (forced-alignment). This
is followed by iteratively training an acoustic model (neural network) and re-estimating the transition
probabilities of the HMM. Furthermore, it has been reported by, for instance, Graves et al. (2013a)
that the improvements in the per-frame classification do not necessarily translate to the decoding
accuracy.

In contrast, some earlier works have proposed to minimize the final decoding error directly by opti-
mizing the sum of costs along the paths in an alignment/decision graph (Bengio et al., 1992; LeCun
et al., 1998). Along this line of research, Graves et al. (2006) proposed, more recently, an alternative
approach called the Connectionist Temporal Classifier (CTC), which can be used without an explicit
input-output alignment.

In the CTC-based model, each per-frame prediction is either one of the set of desired outputs (words,
phones) or a special separator symbol. The final sequence is obtained by removing the separators
and merging blocks of consecutive identical output symbols. A forward-backward algorithm is used
to exactly compute the probability of a desired output sequence given the per-frame predictions.

As an extension of the CTC Graves (2012) proposed the RNN Transducer. Unlike the CTC, which
can be seen as an acoustic-only model, the RNN Transducer has another RNN that acts as a language
model. The transducer is composed of two parts: (1) a transcription network that produces for each
frame of the input sequence either a target symbol or the separator and (2) a prediction network
that generates the final sequence of outputs without separators and repeated symbols. These two
components allow the RNN Transducer to model the probability of observing the next output symbol
given its position in both the input and output sequences. Similarly to the CTC, the probability of
observing an output sequence for a given input is computed using the forward-backward algorithm.

The RNN Transducer computes the score of each possible output token based on the position in
the input and output sequences. Originally, the score was obtained by multiplying the separate
scores from the transcription and prediction networks. Graves et al. (2013b), on the other hand,
used a separate multi-layer perceptron (MLP) to combine the two scores from the transcription and
prediction networks and achieved the state-of-the-art performance on the TIMIT dataset.

1.2 Attention Mechanism

The model we consider in this paper is closely related to the RNN Transducer, however, with an
attention mechanism that decides which input frames be used to generate the next output element.

The attention mechanism in this respect was first used by Graves (2013) to build a neural net-
work that generates convincing handwriting from a given text. At each step, the network predicts a
(soft-)window over the input sequence that corresponds to the character being currently written.

A similar approach of attention was used more recently in a so-called “neural machine translation
model” (Bahdanau et al., 2014). In this case, for generating each target word, the network computes
a score matching the hidden state of an output RNN to each location of the input sequence (Bahdanau
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The output predictions 
are computed with a
Maxout network using two
filters per unit.

Input sequence: 
frames of 40 fMLLR features.

Deep Maxout network reads
11 frames (440 features) and uses
3 hidden layers of 1024 
maxout units each using 5 filters.

BiRNN:
Input is 1024 features per frame
Each recurrent layer has 512
hidden units, thus the annotation
is 1024-dimensional.

Context: a score is computed to match 
the previous hidden state to all input 
annotations. The context is a weighted 
combination of the most closely matching
annotations.

The BiRNN is used
to initialize the first
state of the decoder.

Encoder RNN:
computes an annotation 
for each input frame.

Decoder RNN:
Recurrently predicts 
the next phoneme, 
input annotations
are accessed through
a context computed
separately for each 
output.

+

Figure 1: Proposed model architecture. The system contains three parts: an encoder that computes
annotations of input frames (learned features that may depend on the whole sequence), an attention
mechanism that decides where to look in the input sequence to provide a context for emitting the
next output, and a generative output RNN which iteratively predicts the next phoneme conditioned
on its state and the context. For visual simplicity we have shown only one context computation.

et al., 2014). The scores are normalized to sum to one over the input sequence and can be interpreted
as a probability of each input location being aligned to the currently generated target word.

Unlike the handwriting generation network, the attention mechanism in the neural translation model
may assign high scores to non-adjacent locations in the input sequence, which allows it to perform
long-distance word reordering. In addition, it uses the features of the input sequence extracted by a
bidirectional recurrent neural network, and not just the output RNN state, in order to predict these
alignment probabilities.

In this paper, we propose a model, based on this neural translation model, that is more suited to
speech recognition. We allow the learned soft alignment procedure to take the relative position
into account and add a penalty helping the attention mechanism to choose a single, narrow mode
and encourage that mode of attention to move forward. This helps the model to search nearby,
potentially near-future, input frames given the current belief/state about which output symbols have
been generated. The learned dependency on the relative position of successive points of attention
can, further, be used to speed up decoding, as the final model has to consider only a tiny section of
the input sequence when generating each output symbol.

2 Model architecture

The model consists of an encoder that maps the raw input sequence x = (xi; i = 1, . . . , I) to a
sequence of features h = (hi; i = 1, . . . , I) (also called annotations), a decoder that generates the
output sequence1 y = (yo; o = 1, . . . , O) and an attention mechanism that matches parts of the input

1 The word “decoder” here is used in a sense that comes from the auto-encoder analogy, with the encoder
producing the internal representation of the input sequence and the decoder mapping it to the output sequence
distribution. This is different from the usual use of the word decoder in speech recognition systems to talk
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(a)

(b)

Figure 2: Alignments produced by the model: (a) when the alignment was successfully encouraged
to be monotonic, and (b) when the model is free to select any frame in the input sequence. Each row
in the plot contains the scores computed by the attention mechanism between the previous hidden
state and all the input annotations. In (b), we observe how the absence of the learned preference for
monotonicity makes the model confused by the repeated occurrence of the phonemes “cl k”, and to
a lesser degree, by the repetition of “w”.

sequence with elements of the output sequence (Bahdanau et al., 2014). A graphical illustration of
the model is presented in Fig. 1.

2.1 Decoder

The decoder predicts the output sequence y conditioned on the annotations h of an input sequence
x by factorizing p(y|h) into ordered conditionals:

p(y|h) =
O∏
o=1

p(yo|yo−1, yo−2, . . . , y1,h)

The RNN decoder uses a subset of the input annotations summarized into a context co to compute
both the update to its state and the prediction of the next output symbol:

so = f(so−1, yo−1, co),
p(yo|yo−1, yo−2, . . . , y1,h) = g(yo−1, so, co),

where so−1 and so are the previous and current state vectors, while yo is the prediction of the next
output. The recurrent state update (f ) is computed using an affine layer with a reset-update gate
used as the activation function (Cho et al., 2014) to keep track of long-term dependencies. The next
state prediction (g)is realized with an MLP composed of a Maxout (Goodfellow et al., 2013a) and
SoftMax layers.

about the search algorithm which approximately looks for the most probable configuration of latent and output
variables (the output sequence), e.g., using beam-search. We also use an approximate search mechanism (with
beam search) to look for the most probable output sequence, given the input sequence.
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Figure 3: Learned gating function d(·) (Eq. 2). Figure 4: Illustration of the penalty in Eq. (3).

The context is a weighted sum of annotations:

co =
I∑
i=1

αoihi,

where αoi is a normalized weight for each annotation hi. This effectively means that the decoder
selects each annotation hi with a certainty αoi.

The selection is performed in two steps. First, scores eoi are computed to match the previous state
of the decoder to all annotations. The scores are then penalized based on the relative position of the
current and previous selection, and normalized:

eoi = a(so−1, hi), (1)

êoi = d(i− Eαo−1 [i]) exp(eoi) = d

(
i−

I∑
k=1

αo−1,kk

)
exp(eoi), (2)

αoi =
êoi∑I
k=1 êok

,

where the computation a(·, ·) is an MLP with one hidden layer and linear output, while d(·) is an
MLP with a single hidden layer and logistic sigmoid output ([0, 1]).

The proposed addition of the gating procedure can be understood as follows. The attention mecha-
nism searches through the input sequence to find frames that match the current state of the decoder.
However, in an utterance there may be repeated phonemes that have very similar annotations, which
consequently result in matching to all similarly sounding locations, as shown in Fig. 2 (b). The
gating procedure prevents this behavior by confining the search to locations that are near the inputs
relevant to the previously generated symbol.

It is, however, important to notice that the shape of the gating function d is not defined a priori, but
learned. In Fig. 3, we show the shape of the learned gating function. d(∆) directly encodes the
preference of the input frames ∆ steps away from the previously searched input location Eαo−1 [i].
We clearly see that the model automatically learned to prefer approximately 4 frames in the future
and strongly inhibit the selection of any past frames (∆ < 0). Most of the mass is concentrated
between ∆ = 0 and 12.

2.1.1 Learning to prefer monotonic alignments

We would like to constrain the selection of the frames for consecutive outputs to advance monoton-
ically in time. To motivate the network to find monotonic alignments we design a penalty that is
added to the optimization cost.

We penalize any alignment that maps to inputs which were already considered for output emission.
Since the selection weights αoi are normalized, their cumulative sum over the input sequence is
monotonically increasing and bounded in the range [0, 1]. To encourage the monotonicity of the
alignment over time, we add to the optimization cost the differences po between the cumulative
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sums of the selection weights used to emit the current and previous phoneme:

po = max

(
0,

I∑
i=1

(
i∑

k=1

αok −
i∑

k=1

αo−1,k

))
(3)

An example of the penalty term is shown in Fig. 4. This figure shows the alignment weights and
their CDFs computed for o− 1 and o (represented by two dotted and dot-dashed curves), along with
the penalty cost (long dashes). Intuitively, the proposed penalty encourages the attention mechanism
to select nearby locations in the input sequence that are in the future, rather than in the past with
respect to the previously selected location.

The effect of the proposed penalty term together with the gating procedure (see Eq. (2) can clearly be
observed in Fig. 2. In Fig. 2 (a) where both the gating procedure and the penalty term were used, the
alignment at each time step is confined to a small subset of consecutive locations and is monotonic.
On the other hand, the alignment without the proposed penalty shown in Fig. 2 (b) clearly does not
show these properties.

Although this regularization term could have a hyper-parameter coefficient multiplying it, prelimi-
nary experiments suggested that a value of 1 worked well and we did not optimize it further.

2.2 Encoder

The encoder is implemented using a cascade of a multilayer Maxout network (Goodfellow et al.,
2013a) whose last layer is fed to a bi-directional RNN (BiRNN) (Schuster and Paliwal, 1997; Graves
et al., 2013a). We have chosen this hybrid architecture to combine the ability of the Maxout network
to nonlinearly transform speech features with the efficient summarization of nearby preceding and
following input frames provided by the BiRNN. The BiRNN uses the reset-update gate to account
for long-term dependencies (Cho et al., 2014).

3 Experiments

3.1 Problem setup

We evaluated the model on the TIMIT dataset. The baseline score was established using the recipe
“s5” of the Kaldi toolkit (Povey et al., 2011), using the “score basic.sh” scoring script2. All results
are gathered in Table 1. All models were trained to recognize 48 phonemes, their predictions were
converted to the 39 phoneme set before scoring. All SA sentences were removed from both training
and testing sets. The models were evaluated on the 24 speaker core test set with an auxiliary 50
speaker development set used to select the best network. Similarly to the Kaldi’s DNN recipe we
kept 10% of the training data for validation, which resulted in a final 4-way split of the data into
testing, development, validation, and training sets3.

The networks were trained on speaker adapted fMLLR features obtained using the GMM-HMM
built during stage “tri3” of the “s5” recipe provided by Kaldi. Each acoustic frame was described
using 40 features, however the network had access to segments of 11 frames totaling in 440 features
per frame. Furthermore we used the “tri3” triphone GMM-HMM model to force-align the data to
obtain per-frame training targets.

The networks were implemented using the Theano (Bergstra et al., 2010) and Pylearn2 (Goodfellow
et al., 2013b) libraries.

3.2 RNN training and evaluation

Due to slow convergence of the training process the experiment was limited to training a single
network, with regularization and training hyper-parameters changed during the experiment run. The

2Two scoring scripts are provided (basic and sclite), differing in the way errors in the silence phone are
counted. The basic scoring script treats them as any other error, while the sclite scorer can be configured
to disregard errors related to recognizing silence phones.

3We have thus used the same data preprocessing as the Deep NN part of the TIMIT s5 recipe.
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Table 1: Phoneme error rates of evaluated models
Model DEV TEST

Kaldi TIMIT s5 recipe with basic scorer
Speaker independent triphone GMM-HMM 23.15% 24.32%
Speaker adapted triphone GMM-HMM 20.56% 21.65%
DBN-HMM with SMBR training 17.55% 18.79%
DBN-HMM with SMBR training and greedy search 32.02% 33.00%

Proposed model with the basic scorer
Maxout network with per-frame training 18.41% 19.68%
RNN model with frozen acoustic layer 17.53% 18.68%
RNN model trained end-to-end 16.88% 18.57%
RNN model trained end-to-end with greedy search 17.06% 18.61%

References
Deep RNN Transducer (Graves et al., 2013b) 0N/A 17.7%

obtained results should thus be treated as a preliminary proof-of-concept validation of the proposed
model, rather than a rigorous analysis of its performance.

To ease training of the network we decided to initialize the acoustic part of the RNN encoder with
weights of a deep Maxout network trained with dropout regularization (Goodfellow et al., 2013a;
Hinton et al., 2012b) to predict the states of the HMM. The network was trained purely discrim-
inatively (no layer-wise initialization) to predict per-frame HMM states. The architecture of the
network was mildly optimized, and coupled with an HMM decoder it reached 18.41% development
set error and 19.68% test error.

Next we initialized the proposed RNN encoder-decoder. We removed the final affine transformation
and softmax layer from the acoustic network and used it to initialize the acoustic part of the RNN
encoder. Its parameters were then frozen until the RNN encoder-decoder reached good recognition
performance. We initialized other weights randomly, however the weights in the recurrent connec-
tions were orthonormalized to ease training. For the first training iterations the network did not use
the gating mechanism to disambiguate between matching input frames (2).

The RNN was trained with stochastic gradient descent using the AdaDelta learning rule (Zeiler,
2012) and an adaptive gradient clipping mechanism described in section 3.2.1. To save on com-
putation time, mini-batches were composed of utterances of similar length (we re-shuffled the data
on each epoch, divided it into groups of up to 32 utterances and sorted each group before forming
the batches). We trained with a minibatch size 4. Each utterance was processed with the Maxout
network, and then we appended a frame containing only zeros to indicate to the RNN where the
utterance ends.

When the network started to generate good phoneme sequences we enabled the gating mechanism
and added to the training cost the penalty for alignment non-monotonicity (c.f. sec. (3)). The gating
MLP (d in eq. (2)) receives large inputs (up to the number of input frames), therefore its hidden
layer was manually initialized: the weights were set to the constant 10−3, while the corresponding
biases were uniformly distributed in the (−5, 5) range. At the same time we added a weight decay
penalty of 10−3 applied to the weights of the MLP predicting the next phoneme and of 2 · 10−4 to
the weights in the network used to score input frames in Eq. (1). The best decoding error reached
on the development set was 17.53% which corresponded to 18.68% on the test set.

Finally, we included into training the pre-initialized Maxout part of the encoder. However, we
disabled dropout regularization as we found that it increased the decoding errors on the development
set by a few percentage points and the network was very slow to recover. The training of the full
network lowered the development set error to 16.88%, which corresponded to a test error of 18.57%.

In an auxiliary experiment we analyzed the importance of the beam-search width on decoding ac-
curacy. We observed that a narrow beam width is required to reach optimal performance (decoding
with beam width 10 is sufficient) and that the accuracy degraded very slightly if the beam serach
is replaced with a greedy search. To put this result into context we have used the HMM decoder
with a beam search width limited to 1. We have tuned the weighting of the acoustic and language
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model scores. Both development and test error rates increased to about 32%. This result shows is an
important characteristic of the proposed model as it suggests that the RNN encoder-decoder really
learns how to align the input and output sequences.

3.2.1 Improving the Convergence of AdaDelta

In order to avoid the issue of exploding gradient, we rescaled the norm of the gradient, if it went over
a predefined threshold (Pascanu et al., 2013). However, with this gradient rescaling, we observed
that AdaDelta failed to converge to a lower training error at the later stage of training. We addressed
this problem by multiplying the gradient with a small scalar (typically, 10−2) at the later stage of
learning. As this procedure clearly affects the original gradient rescaling, we used the following
algorithm to automatically adapt the gradient rescaling threshold:

∇Θ = gradient of the loss, g = ∇Θ · gradient scale, ng =
√∑

g2
i

Elogng = min
(
ρ,

nsteps
nsteps+1

)
Elogng +

(
1−min

(
ρ,

nsteps
nsteps+1

))
log(ng)

Elog2ng = ρElog2ng + (1− ρ) log2(ng)

rg =

g, if ng ≤ exp
(

Elogng + κ ∗
√

max
(
0,Elog2ng − Elog2

ng

))
g

exp(Elogng)

ng , otherwise

The rescaled gradient rg was then passed to the AdaDelta update procedure.

The accumulators Elogng and Elog2ng were initialized to 0 at the beginning of the run. The algo-
rithm uses a smaller decay constant to compute the moving average of the mean in the early stage
to underestimate the standard deviation. This has the effect of having a threshold close to the mean
value at the beginning and increasing the threshold only when the running averages are correctly
tracking the norm of the gradient.

4 Conclusions

We report preliminary results of phoneme recognition with an RNN model that does not require an
explicit alignment and produces a desired output sequence directly, without resorting to intermediate
per-frame predictions that have to be processed with a specialized decoding algorithm. The proposed
model is an extension of the network used for neural machine translation (Bahdanau et al., 2014) and
is closely related to CTC and the RNN Transducer (Graves et al., 2006, 2013b). Although closely
related, our model differs from these models in multiple aspects.

For instance, the proposed approach is related to the RNN Transducer in the sense that scores are
computed for all pairs of positions in the input and output sentences. However, in the RNN Trans-
ducer the scores define a distribution over a latent alignment, which is then marginalized out. The
proposed model (a variant of RNN Encoder–Decoder (Cho et al., 2014; Bahdanau et al., 2014)) in-
stead uses the scores as an explicit alignment which is used to compute a context vector. In addition
the decoder state of our model contains information about previous alignment choices unlike the
states of the generation network from the RNN Transducer.

Accessing the input sequence through a context vector is related to the model that generates hand-
written characters, proposed recently by Graves (2013). Their handwriting generation network,
however, predicts the location of the inputs selected for the next step, while our model scans through
all inputs looking for correctly matching patterns. This scanning of the whole sequence helps the
model deal with irregularities in speech, such as long pauses. Nevertheless, our model learns an
expected distance between inputs pertaining to subsequent output symbols to disambiguate between
occurrences of similar input frames (see Fig. 3). This relation can be used to speed up the recogni-
tion by confining the search for matching frames to the most probable locations only.

We observed that our model performs well even with a simple, narrow-beam search which is close to
greedy search. This fact has its significance in extending the proposed approach to a large vocabulary
speech recognition system. As the decoding of the phoneme stream is nearly deterministic, we may
simply put on top of the phone sequence another RNN that models a sequence of words. In this case,
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we will be able to directly search for the most probable sequence of words, instead of the phoneme
level or frame level (as is done by the HMM-based hybrid systems).
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