lan’s ideas for research
projects

Tea talk Jan 16

Research ideas

Restricted maxout units

Big, sparsely connected nets Zacieliees
Piece change regularization

Trajectory optimization|

Cognitive agency

Restricted maxout units
® Meng Cai i

® Maxout works without dropout Ry v

r.A

A

| \’ Poole
: ’

® Best # of filters per unit without dropout - =
is 2

T

1NOT-1 FILTER?.

Restricted

maxout

units

Rectifier
|

Absolute value Quadratic

Works on MNIST

® Permutation invariant test error:
® Maxout + dropout: 0.94%
® ReMUs + dropout: 0.90%

® Benefit is from the ReMU itself, not the
(direction, slope) parameterization

What'’s left to do

® Get it working somewhere else

® | had trouble getting it to work on
CIFAR-10, but haven’t tried hard yet

® Show that it reduces overfitting (maybe
works better without dropout?)

® S
® S

oW €

oW €

nat it reg

nat it reg

uces memory consumption

uces runtime

0
.5@5

Sparse connectivity for

other tasks
® |anguage modeling (Mehdi)

® Yoshua pushed this idea years ago;

Joseph Turian was too busy winning
$IM

® Recurrent nets tend to underfit
(Vincent?)

® |lya Sutskever recommends working on
Schmidhuber’s benchmark

Piece change
regularization

“® Dropout model averaging is perfect for
RelLUs/maxout if dropping units doesn’t
move you from one linear piece to another

® Hypothesis that we thought might explain
why dropout is better for maxout / ReLUs
than curvy activation functions:

® Maybe dropout training makes you
change linear pieces less often

+~— train_piece_change_rate:mnist_pi
+~— train_piece_change_rate:mnist_pi_n

Dropout doesn’t do
what we thought

® So the hypothesis was wrong
® This is an opportunity to improve

® Could design an objective function term
to encourage low piece change rate

® Many possible surrogate functions

g

—

Trajectory optimizationsZS

® Technique from reinforcement learning

® Used in conjunction with variational policy
optimization:

® E-step:figure out best sequence of
actions for multiple simulated scenarios

® M-step: update policy to increase
likelihood of these optimal “trajectories”

Trajectory optimization
for recurrent nets

Make the states of the net optimization variables
themselves

Alternate between searching between better
sequences of hidden states and better model params

Mitigates vanishing gradient by facilitating larger
search steps

No explosion problem anymore:

® Model gradients only propagated | step

® States are bounded

Possible applications

® |nteract with non-neural computation objects
® Example: stack
® Cognitive agent learns to send actions PUSH and POP
® Can store/retrieve states of a specific hidden layer

® Better memory for recurrent net (e.g., PUSH every
time you see)", POP every time you see ‘), predict)’
only if something is on the stack)

® Combine with attention to have net learn to do
structured parsing tasks

® Could also do tapes, hash maps, etc.

Possible ways of getting
there

® Model expected reward of each action
® Select action with highest expected reward

® | earning might need to be based on causal modeling
(see Judea Pearl’s tutorial) rather than statistical
modeling

® VWe are making intervention queries

® VWe are not inferring conditional distributions

