
Ian’s ideas for research
projects
Tea talk Jan 16

Research ideas

• Restricted maxout units

• Big, sparsely connected nets

• Piece change regularization

• Trajectory optimization

• Cognitive agency

Restricted maxout units
• Meng Cai

• Maxout works without dropout

• Best # of filters per unit without dropout
is 2

Restricted maxout
units

Maxout Networks

a series of hidden layers h = {h

(1)
, . . . , h

(L)}. Dropout
trains an ensemble of models consisting of the set of
all models that contain a subset of the variables in
both v and h. The same set of parameters ◊ is used
to parameterize a family of distributions p(y | v; ◊, µ)
where µ œ M is a binary mask determining which vari-
ables to include in the model. On each presentation of
a training example, we train a di�erent sub-model by
following the gradient of log p(y | v; ◊, µ) for a di�erent
randomly sampled µ. For many parameterizations of p

(such as most multilayer perceptrons) the instantiation
of di�erent sub-models p(y | v; ◊, µ) can be obtained by
elementwise multiplication of v and h with the mask
µ. Dropout training is similar to bagging (Breiman,
1994), where many di�erent models are trained on dif-
ferent subsets of the data. Dropout training di�ers
from bagging in that each model is trained for only
one step and all of the models share parameters. For
this training procedure to behave as if it is training an
ensemble rather than a single model, each update must
have a large e�ect, so that it makes the sub-model in-
duced by that µ fit the current input v well.

The functional form becomes important when it comes
time for the ensemble to make a prediction by aver-
aging together all the sub-models’ predictions. Most
prior work on bagging averages with the arithmetic
mean, but it is not obvious how to do so with the
exponentially many models trained by dropout. For-
tunately, some model families yield an inexpensive ge-

ometric mean. When p(y | v; ◊) = softmax(vT
W + b),

the predictive distribution defined by renormalizing
the geometric mean of p(y | v; ◊, µ) over M is simply
given by softmax(vT

W/2+b). In other words, the aver-
age prediction of exponentially many sub-models can
be computed simply by running the full model with
the weights divided by 2. This result holds exactly
in the case of a single layer softmax model. Previous
work on dropout applies the same scheme in deeper ar-
chitectures, such as multilayer perceptrons, where the
W/2 method is only an approximation to the geometric
mean. The approximation has not been characterized
mathematically, but performs well in practice.

3. Description of maxout
The maxout model is simply a feed-forward achitec-
ture, such as a multilayer perceptron or deep convo-
lutional neural network, that uses a new type of ac-
tivation function: the maxout unit. Given an input
x œ Rd (x may be v, or may be a hidden layer’s state),
a maxout hidden layer implements the function

hi(x) = max
jœ[1,k]

zij

where zij = x

T
W···ij + bij , and W œ Rd◊m◊k and

b œ Rm◊k are learned parameters. In a convolutional
network, a maxout feature map can be constructed
by taking the maximum across k a�ne feature maps
(i.e., pool across channels, in addition spatial loca-
tions). When training with dropout, we perform the
elementwise multiplication with the dropout mask im-
mediately prior to the multiplication by the weights in
all cases–we do not drop inputs to the max operator.
A single maxout unit can be interpreted as making a
piecewise linear approximation to an arbitrary convex
function. Maxout networks learn not just the rela-
tionship between hidden units, but also the activation
function of each hidden unit. See Fig. 1 for a graphical
depiction of how this works.

x

h
i
(x

)

Rectifier

x

h
i
(x

)
Absolute value

x

h
i
(x

)

Quadratic

Figure 1. Graphical depiction of how the maxout activa-
tion function can implement the rectified linear, absolute
value rectifier, and approximate the quadratic activation
function. This diagram is 2D and only shows how max-
out behaves with a 1D input, but in multiple dimensions a
maxout unit can approximate arbitrary convex functions.

Maxout abandons many of the mainstays of traditional
activation function design. The representation it pro-
duces is not sparse at all (see Fig. 2), though the
gradient is highly sparse and dropout will artificially
sparsify the e�ective representation during training.
While maxout may learn to saturate on one side or
the other this is a measure zero event (so it is almost
never bounded from above). While a significant pro-
portion of parameter space corresponds to the function
being bounded from below, maxout is not constrained
to learn to be bounded at all. Maxout is locally lin-
ear almost everywhere, while many popular activation
functions have signficant curvature. Given all of these
departures from standard practice, it may seem sur-
prising that maxout activation functions work at all,
but we find that they are very robust and easy to train
with dropout, and achieve excellent performance.

4. Maxout is a universal approximator
A standard MLP with enough hidden units is a uni-
versal approximator. Similarly, maxout networks are
universal approximators. Provided that each individ-
ual maxout unit may have arbitrarily many a�ne com-
ponents, we show that a maxout model with just two
hidden units can approximate, arbitrarily well, any

vs

Works on MNIST

• Permutation invariant test error:

• Maxout + dropout: 0.94%

• ReMUs + dropout: 0.90%

• Benefit is from the ReMU itself, not the
(direction, slope) parameterization

What’s left to do

• Get it working somewhere else

• I had trouble getting it to work on
CIFAR-10, but haven’t tried hard yet

• Show that it reduces overfitting (maybe
works better without dropout?)

• Show that it reduces memory consumption

• Show that it reduces runtime

Big, sparsely connected
nets

• Neural nets are suddenly big in applications:

• ImageNet-level object rec

• Object detection

• Speech rec

• House number transcription

What changed?
• Greedy layerwise pretraining

• Probabilistic semantics

• Manifold semantics

• Semi-supervised learning

• Rectified linear units

• Large datasets

• Large models

Model size

Model connectivity

Sparse connectivity for
other tasks

• Language modeling (Mehdi)

• Yoshua pushed this idea years ago;
Joseph Turian was too busy winning
$1M

• Recurrent nets tend to underfit
(Vincent?)

• Ilya Sutskever recommends working on
Schmidhuber’s benchmark

How to do it
• First hidden layer is densely connected

• first_hidden_layer.reshape(square)

• apply cuda_convnet

• Other options:

• Sparse multiplication on CPU

• for loop and subtensor

• CUBLAS block matrix multiply
(Razvan)

Piece change
regularization

• Dropout model averaging is perfect for
ReLUs/maxout if dropping units doesn’t
move you from one linear piece to another

• Hypothesis that we thought might explain
why dropout is better for maxout / ReLUs
than curvy activation functions:

• Maybe dropout training makes you
change linear pieces less often

Reality

Dropout doesn’t do
what we thought

• So the hypothesis was wrong

• This is an opportunity to improve

• Could design an objective function term
to encourage low piece change rate

• Many possible surrogate functions

Trajectory optimization

• Technique from reinforcement learning

• Used in conjunction with variational policy
optimization:

• E-step: figure out best sequence of
actions for multiple simulated scenarios

• M-step: update policy to increase
likelihood of these optimal “trajectories”

Trajectory optimization
for recurrent nets• Make the states of the net optimization variables

themselves

• Alternate between searching between better
sequences of hidden states and better model params

• Mitigates vanishing gradient by facilitating larger
search steps

• No explosion problem anymore:

• Model gradients only propagated 1 step

• States are bounded

Cognitive agency

• Idea: use reinforcement learning to learn
how to think

• Agents that can take cognitive actions

Possible applications
• Discrete-valued units (Yoshua and others have already

explored this a lot)

• Possibly a strong regularizer

• “Stickier” memory units in recurrent nets (think
digital versus analog)

• Gating (Yoshua already has Mehdi + Nicholas
exploring this)

• Turn off sections of a net to make it cheaper

Possible applications
• Routing

• Let layer i have incoming weights W

• Choose which block of layer i-1 is connected to it
dynamically

• The action is a switch that chooses which block to send

• Olshausen did this with 1-layer models where blocks are
spatial locations of image

• Implements attention; speeds up inference

• Routing with learned blocks = attention to abstract
properties

Possible applications
• Interact with non-neural computation objects

• Example: stack

• Cognitive agent learns to send actions PUSH and POP

• Can store/retrieve states of a specific hidden layer

• Better memory for recurrent net (e.g., PUSH every
time you see ‘)”, POP every time you see ‘)’, predict ‘)’
only if something is on the stack)

• Combine with attention to have net learn to do
structured parsing tasks

• Could also do tapes, hash maps, etc.

Possible ways of getting
there

• Model expected reward of each action

• Select action with highest expected reward

• Learning might need to be based on causal modeling
(see Judea Pearl’s tutorial) rather than statistical
modeling

• We are making intervention queries

• We are not inferring conditional distributions

