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Abstract We propose a theory that relates difficulty of learning in deep architec-
tures to culture and language. It is articulated around the following hypotheses:
(1) learning in an individual human brain is hampered by the presence of effec-
tive local minima; (2) this optimization difficulty is particularly important when
it comes to learning higher-level abstractions, i.e., concepts that cover a vast and
highly-nonlinear span of sensory configurations; (3) such high-level abstractions
are best represented in brains by the composition of many levels of representation,
i.e., by deep architectures; (4) a human brain can learn such high-level abstractions
if guided by the signals produced by other humans, which act as hints or indirect
supervision for these high-level abstractions; and (5), language and the combina-
tion of old ideas into new ideas provide an efficient evolutionary recombination
operator, and this allows rapid search in the space of communicable ideas that help
humans build up better high-level internal representations of their world. These hy-
potheses put together imply that human culture and the evolution of ideas have been
crucial to counter an optimization difficulty: this optimization difficulty would oth-
erwise make it very difficult for human brains to capture high-level knowledge of
the world. The theory is grounded in experimental observations of the difficulties
of training deep artificial neural networks. Plausible consequences of this theory for
the efficiency of cultural evolutions are sketched.

1 Introduction

Interesting connections can sometimes be made at the interface between artificial in-
telligence research and the sciences that aim to understand human brains, cognition,
language, or society. The aim of this paper is to propose and elaborate a theory at this
interface, inspired by observations rooted in machine learning research, on so-called
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Deep Learning1. Deep Learning techniques aim at training models with many levels
of representation, a hierarchy of features and concepts, such as can be implemented
with artificial neural networks with many layers. The family of functions or distri-
butions represented, e.g., by a neural network is called an architecture, and a deep
architecture when it has more than 2 or 3 trained levels of representation. The visual
cortex is believed to have between 5 and 10 such levels. Theoretical arguments have
also been made to suggest that deep architectures are necessary to efficiently repre-
sent the kind of high-level concepts required for artificial intelligence (Bengio and
LeCun, 2007). This paper starts from experimental observations of the difficulties
in training deep architectures (Erhan et al., 2010), and builds a theory of the role
of cultural evolution to reduce the difficulty of learning high-level abstractions. The
jist of this theory is that training deep architectures such as those found in the brain
is difficult because of an optimization difficulty (local minima), but that the cultural
evolution of ideas can serve as a way for a whole population of humans, over many
generations, to efficiently discover better solutions to this optimization problem.

2 Neural Networks and Local Minima

2.1 Neural Networks

Artificial neural networks are computational architectures and learning algorithms
that are inspired from the computations believed to take place in the biological
neural networks of the brain (Arbib, 1995). The dominant and most successful ap-
proaches to training artificial neural networks are all based on the idea that learn-
ing can proceed by gradually optimizing a criterion (Rumelhart et al., 1986). A
neural network typically has free parameters, such as the synaptic strengths asso-
ciated with connections between neurons. Learning algorithms formalize the com-
putational mechanism for changing these parameters so as to take into account the
evidence provided by observed (training) examples. Different learning algorithms
for neural networks differ in the specifics of the criterion and how they optimize
it, often approximately because no analytic and exact solution is possible. On-line
learning, which is most plausible for biological organisms, involves changes in the
parameters either after each example has been seen or after a small batch of exam-
ples has been seen (maybe corresponding to a day’s worth of experience).

1 See Bengio (2009) for a review of Deep Learning research, which had a breakthrough in
2006 (Hinton et al., 2006; Bengio et al., 2007; Ranzato et al., 2007)
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2.2 Training Criterion

In the case of biological organisms, one could imagine that the ultimate criterion
involves the sum of expected future rewards (survival, reproduction, and other in-
nately defined reward signals such as hunger, thirst, and the need to sleep). However,
intermediate criteria typically involve modeling the observations from the senses,
i.e., improving the prediction that could be made of any part of the observed sen-
sory input given any other part, and improving the prediction of future observations
given the past observations. Mathematically, this can often be captured by the sta-
tistical criterion of maximizing likelihood, i.e., of maximizing the probability that
the model implicitly or explicitly assigns to new observations.

2.3 Learning

The learning problem can be formalized as follows. Let θ be a vector of parameters
that are free to change while learning (such as the synaptic strengths of neurons
in the brain). Let z represent an example, i.e., a measurement of the variables in
the environment which are relevant to the learning agent. The agent is given a past
history z1,z2, . . . ,zt , which in realistic cases also depends on the actions of the agent.
Let L(θ ,z) be a measurement of a loss to be minimized, whose future expected value
is the criterion to be minimized. In the simple case where we ignore the effect of
current actions on future rewards but only consider the value of a particular solution
to the learning problem over the long term, the objective of the learner is to minimize
the criterion

C(θ) =
∫

P(z)L(θ ,z)dz = E[L(θ ,Z)] (1)

which is the expected future loss, with P(z) the unknown probability distribution
from which the world generates examples for the learner. In the more realistic set-
ting of reinforcement learning (Sutton and Barto, 1998), the objective of the learner
is often formalized as the minimization of the expected value of the weighted sum
of future rewards, with weights that decay as we go further in the future (food now
is valued more than food tomorrow, in general). Although the training criterion can-
not be computed exactly (because P(·) is unknown to the learner), the criterion C(·)
can be approximately minimized by stochastic gradient descent (as well as other
gradient-based optimization techniques): the learner just needs to estimate the gra-
dient ∂L(θ ,z)

∂θ
of the loss L with respect to the parameters, i.e., estimate the effect of

a change of the parameters on the loss. Let g be such an estimator (e.g., if it is un-
biased then E[g] = E[ ∂L(θ ,z)

∂θ
]). For example, g could be based on a single example

or a day’s worth of examples. Then stochastic gradient descent proceeds by small
steps of the form

θ ← θ − εg (2)
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where ε is a small constant called learning rate or gain. Applying these ideas to
biological learners gives the following hypothesis.

Hypothesis H1. When the brain of a single biological agent learns,
it performs an approximate optimization with respect to some en-
dogenous objective.

Note that the criterion we have in mind here is not specialized to a single task, as
is often the case in applications of machine learning. Instead, a biological learning
agent must make good predictions in all the contexts that it encounters, and espe-
cially those that are more relevant to its survival. It needs to “solve” many tasks,
corresponding to different types of contexts and decisions, something calling called
multi-task learning, transfer learning or self-taught learning (Caruana, 1993; Raina
et al., 2007). All of these tasks share the same underlying “world” that surrounds the
agent, and brains probably take advantage of these commonalities, allowing them to
quickly generalize to new tasks (something that seems difficult with more standard
single-task learning algorithms).

Note also that biological agents probably need to address multiple objectives to-
gether. However, in practice, since the same brain must take the decisions that can
affect all of these criteria, these cannot be decoupled but they can be lumped into
a single criterion with appropriate weightings (which may be innate and chosen by
evolution). For example, it is very likely that biological learners must cater both to a
“predictive” type of criterion (similar to the data-likelihood used in statistical mod-
els or in unsupervised learning algorithms) and a “reward” type of criterion (similar
to the rewards used in reinforcement learning algorithms). The former explains cu-
riosity and our ability to make sense and learn from things from which we derive
no immediate or foreseeable benefit or loss. The latter is clearly crucial for survival,
as biological brains needs to focus its modeling efforts on what matters most to
survival.

2.4 Local Minima

Stochastic gradient descent is one of many optimization techniques that perform a
local descent: starting from a particular configuration of the parameters (e.g. a con-
figuration of the brain’s synapses), one makes small gradual adjustments which in
average tend to improve the expected loss, our training criterion. The theory pro-
posed here relies on the following hypothesis:

Hypothesis H2. When the brain of a single biological agent learns,
it relies on approximate local descent in order to gradually improve
itself.

Here note that we refer to a single learning agent because we exclude the effect
of interactions between learning agents, like those that occur because of commu-
nication between humans in a human society. Later we will advocate that in fact
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when one takes into account the learning going on throughout a society, the opti-
mization is not just a local descent but involves a global parallel search similar to
that performed by evolution and sexual reproduction.

Let us now clarify what we mean by local descent. For example, if the learning
algorithm is a form of stochastic gradient descent (eq. 2), where g approximates
the gradient (it may even have a bias), and if ε is chosen small enough (compared
to the largest second derivatives of C), then C will gradually decrease with high
probability, and if ε is gradually decreased at an appropriate rate (such as 1/t),
then the learner will converge towards a local minimum of C. The proofs are usu-
ally for the unbiased case (Bottou, 2004), but a small bias is not necessarily very
hurtful, as shown for Contrastive Divergence (Carreira-Perpiñan and Hinton, 2005;
Yuille, 2005), especially if the magnitude of the bias also decreases as the gradient
decreases (stochastic approximation convergence theorem (Yuille, 2005)).
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Fig. 1 Illustration of learning that proceeds by local descent, and can get stuck near a local min-
imum (going from left figure to right figure). The horizontal axis represents the space of synaptic
configurations (parameters of the learner), while the vertical axis represents the training criterion
(expected future loss). The ball represents the learner’s current state, which tends to go downwards
(improving the expected loss). Note that the space of synaptic configurations is huge (number of
synaptic connections on the order of 100 trillion in humans) but represented here schematically
with a single dimension, the horizontal axis.

2.5 Effective Local Minima

As illustrated in Figure 1, a local minimum is a configuration of the parameters such
that no small change can yield an improvement of the training criterion. A conse-
quence of Hypothesis H2, if it is true, is therefore that biological brains would be
likely to stop improving after some point, after they have sufficiently approached a
local minimum. In practice, if the learner relies on a stochastic gradient estimator
(which is the only plausible hypothesis we can see, because no biological learner
has access to the full knowledge of the world required to directly estimate C), it
will continue to change due to the stochastic nature of the gradient estimator (the
training signal), hovering stochastically around a minimum. It is also quite possible
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that biological learners do not have enough of a lifetime to really get very close
to an actual local minimum, but what is plausible is that they get to a point where
progress is very slow (so slow as to be indistinguishable from random hovering near
a minimum). In practice, when one trains an artificial neural network with a learn-
ing algorithm based on stochastic gradient descent, one often observes that training
saturates, i.e., no more observable progress is seen in spite of the additional exam-
ples being shown continuously. The learner appears stuck near a local minimum.
Because it is difficult to verify that a learner is really near a local minimum, we call
these effective local minima. It may happen that the training criterion is a compli-
cated function of the parameters, such that stochastic gradient descent is sometimes
practically stuck in a place in which it is not possible to improve in most directions,
but from where other more powerful descent methods could escape (Martens, 2010).

3 High-Level Abstractions and Deep Architectures

Deep architectures (Bengio, 2009) are parametrized families of functions which can
be used to model data using multiple levels of representation. In deep neural net-
works, each level is associated with a group of neurons (which in the brain could
correspond to an area, such as areas V1, V2 or IT of the visual cortex). During sen-
sory perception in animal brains, information travels quickly from lower (sensory)
levels to higher (more abstract) levels, but there are also many feedback connections
(going from higher to lower levels) as well as lateral connections (between neurons
at the same level). Each neuron or group of neurons can be thought of as capturing
a concept or feature or aspect, and being activated when that concept or feature or
aspect is present in the sensory input, or when the model is generating an internal
configuration (a “thought” or “mental image”) that includes that concept or feature
or aspect. Note that very few of these features actually come to our consciousness,
because most of the inner workings of our brains are not directly accessible (or
rarely so) to our consciousness. Note also that a particular linguistic concept may
be represented by many neurons or groups of neurons, activating in a particular pat-
tern, and over different levels (in fact so many neurons are activated that we can
see whole regions being activated with brain imaging, even when a single linguistic
concept is presented as stimulus). This is called distributed representation because
what would in most symbolic systems be represented by a single “on/off” bit (e.g.,
the symbol for ’table’ is activated) is associated in the brain with a large number of
neurons and groups of neurons being activated together in a particular pattern. In
this way, concepts that are close semantically, i.e., share some attributes (e.g. rep-
resented by a group of neurons), can have an overlap in their brain representation,
i.e., their corresponding patterns of activation have “on” bits in many of the same
places.



Evolving Culture vs Local Minima 7

3.1 Efficiency of Representation

Deeper architectures can be much more efficient in terms of representation of func-
tions (or distributions) than shallow ones, as shown with theoretical results where
for specific families of functions a too shallow architecture can require exponen-
tially more resources than necessary (Yao, 1985; Håstad, 1986; Håstad and Gold-
mann, 1991; Bengio and LeCun, 2007; Bengio, 2009; Bengio et al., 2010; Bengio
and Delalleau, 2011). The basic intuition why this can be true is that in a deep archi-
tecture there is re-use of parameters and sharing of sub-functions to build functions.
We do not write computer programs with a single main program: instead we write
many subroutines (functions) that can call other subroutines, and this nested re-use
provides not only flexibility but also great expressive power. However, this greater
expressive power may come at the price of a making the learning task a more dif-
ficult optimization problem . Because the lower-level features can be used in many
ways to define higher-level features, the interactions between parameters at all lev-
els makes the optimization landscape much more complicated. At the other extreme,
many shallow methods are associated with a convex optimization problem, i.e., with
a single minimum of the training criterion.

Fig. 2 Example of a simple manifold in the space of images, associated with a rather low-level
concrete concept, corresponding to rotations and shrinking of a specific instance of the image of a
drawn digit 4. Each point on the manifold corresponds to an image which is obtained by rotating
or translating or scaling another image on the manifold. The set of points in the manifold defines
a concrete concept associated with the drawing of a 4 of a particular shape irrespective of its
position, angle and scale. Even learning such simple manifolds is difficult, but learning the much
more convoluted and higher-dimensional manifolds of more abstract concepts is much harder.
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3.2 High-Level Abstractions

We call high-level abstraction the kind of concept or feature that could be com-
puted efficiently only through a deep structure in the brain (i.e., by the sequential
application of several different transformations, each associated with an area of the
brain or large group of neurons). An edge detector in an image seen by the eye can
be computed by a single layer of neurons from raw pixels, using Gabor-like filters.
This is a very low-level abstraction. Combining several such detectors to detect cor-
ners, straight line segments, curved line segments, and other very local but simple
shapes can be done by one or two more layers of neurons, and these can be com-
bined in such a way as to be locally insensitive to small changes in position or angle.
Consider a hierarchy of gradually more complex features, constructing detectors for
very abstract concepts which are activated whenever any stimulus within a very
large set of possible input stimuli are presented. For a higher-level abstraction, this
set of stimuli represents a highly-convoluted set of points, a highly curved manifold.
We can picture such a manifold if we restrict ourselves to a very concrete concept,
like the image of a specific object (the digit 4, as in Figure 2) on a uniform back-
ground. The only factors that can vary are due to the changes in geometry (location
and orientation of the object with respect to the eye) and lighting, and we can use
mathematics to help us make sense of such manifolds. Now think about all the im-
ages which can elicit a thought of a more abstract concept, such as “human”, or even
more abstract, all the images which can elicit a thought of the concept “relaxing”.
These images can be very different from each other, and in many complicated ways,
for which scientists do not know how to construct the associated manifolds. Some
concepts are clearly higher-level than others, and often we find that higher-level con-
cepts can be defined in terms of lower-level ones, hence forming a hierarchy which
is reminiscent of the kind of hierarchy that we find current deep learning algorithms
to discover (Lee et al., 2009). This discussion brings us to the formulation of a hy-
pothesis about high-level abstractions and their representation in brains.

Hypothesis H3. Higher-level abstractions in brains are represented
by deeper computations (going through more areas or more com-
putational steps).

4 The Difficulty of Training Deep Architectures

There are a number of results in the machine learning literature that suggest that
training a deeper architecture is often more difficult than training a shallow one, in
the following sense. When trying to train all the layers together with respect to a
joint criterion such as the likelihood of the inputs or the conditional likelihood of
target classes given inputs, results can be worse than when training a shallow model,
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unless some tricks are used that help provide a kind of training signal at each level
in the hierarchy (each layer of the deep neural net).

4.1 Unsupervised Layer-Wise Pre-training

The first results of that nature appear in Bengio et al. (2007); Ranzato et al. (2007),
where the same architecture gives very different results depending on the initial-
ization of the network weights, either purely randomly, or based on unsupervised
layer-wise pre-training. The idea of the layer-wise pre-training scheme (Hinton and
Salakhutdinov, 2006; Hinton et al., 2006; Bengio et al., 2007; Ranzato et al., 2007)
is to train each layer with an unsupervised training criterion, so that it learns a new
representation, taking as input the representation of the previous layer. Each layer
is thus trained in sequence one after the other. Although this is probably not bio-
logically plausible as such, what would be plausible is a mechanism for providing
an unsupervised signal at each layer (group of neurons) that makes it learn to better
capture the statistical dependencies in its inputs. That layer-local signal could still
be combined with a global training criterion but might help to train deep networks if
there is an optimization difficulty in coordinating the training of all layers simulta-
neously. Another indication that a layer-local signal can help to train deep networks
came from the work of Weston et al. (2008), where the unsupervised layer-local
signal was combined with a supervised global signal that was propagated through
the whole network. This observation of the advantage brought by layer-local signals
was also made in the context of purely unsupervised learning of a deep stochastic
network, the Deep Boltzmann Machine (Salakhutdinov and Hinton, 2009a). By pre-
training each layer as a Restricted Boltzmann Machine2 before optimizing a Deep
Boltzmann Machine (DBM) that comprises all the levels, the authors are able to
train the DBM, whereas directly training it from random initialization was prob-
lematic. We summarize several of the above results in the deep learning literature
with the following Observation O1: training deep architectures is easier if hints are
provided about the function that intermediate levels should compute (Hinton et al.,
2006; Weston et al., 2008; Salakhutdinov and Hinton, 2009a; Bengio, 2009). This
is connected to an even more obvious Observation O2, from the work on artifi-
cial neural networks: it is much easier to teach a network with supervised learning
(where we provide it examples of when a concept is present and when it is not
present in a variety of examples) than to expect unsupervised learning to discover
the concept (which may also happen but usually leads to poorer renditions of the
concept).

2 RBM, which ignores the interaction with the other levels, except for receiving input from the
level below.
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Fig. 3 Effect of depth on generalization error, with layer-wise unsupervised pre-training (bottom)
and without (top). The training problem becomes more difficult for deeper nets, and using a layer-
local cue to initialize each level helps to push the difficulty a bit farther.

4.2 More Difficult for Deeper Architectures and More Abstract
Concepts

Another clue to this training difficulty came in later studies showing that directly
training all the layers together would not only make it difficult to exploit all the
extra modeling power of a deeper architecture but would actually get worse results
as the number of layers is increased (Larochelle et al., 2009; Erhan et al., 2010), as
illustrated in Figure 3. We call this Observation O3.
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Fig. 4 Two-dimensional non-linear projection of the space of functions visited by artificial neural
networks during training. Each cross or diamond or circle represents a neural network at some
stage during its training, with color indicating its age (number of examples seen), starting from
blue and moving towards red. Networks computing a similar function (with similar response to
similar stimuli) are nearby on the graph. Top figure uses t-SNE for dimensionality reduction (insists
on preserving local geometry) while the bottom figure uses Isomap (insists on preserving global
geometry and volumes). The vertical crosses (top figure) and circles (bottom figure) are networks
trained from random initialization, while the diamonds (top figure) and rotated crosses (bottom
figure) are networks with unsupervised pre-training initialization.
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In Erhan et al. (2010) we went further in an attempt to understand this train-
ing difficulty and studied the trajectory of deep neural networks during training, in
function space. Such trajectories are illustrated in Figure 4. Each point in the tra-
jectory corresponds to a particular neural network configuration and is visualized
as a two-dimensional point as follows. First, we approximate the function com-
puted by a neural network non-parametrically, i.e., by the outputs of the function
over a large test set (of 10000 examples). We consider that two neural networks
behave similarly if they provide similar answers on these test examples. We cannot
use the network parameters to compare neural networks because the same func-
tion can be represented in many different ways (e.g., because permutations of the
hidden neuron indices would yield the same network function). We therefore asso-
ciate each network to a very long vector3, a point in a very high-dimensional space,
and we compute these points for all the networks in the experiment. We then learn
a mapping from these points to 2-dimensional approximations, so as to preserve
local (and sometimes global) structure as much as possible, using non-linear dimen-
sionality reduction methods such as t-SNE (van der Maaten and Hinton, 2008) or
Isomap (Tenenbaum et al., 2000). Figure 4 allows us to draw a number of interesting
conclusions:

1. Observation O4. No two trajectories end up in the same local minimum. This
suggests that the number of functional local minima (i.e. corresponding to dif-
ferent functions, each of which possibly corresponding to many instantiations in
parameter space) must be huge.

2. Observation O5. A training trick (unsupervised pre-training) which changes the
initial conditions of the descent procedure allows to reach much better local min-
ima, and these better local minima do not appear to be reachable by chance alone
(note how the regions in function space associated with the two “flowers” have
no overlap at all, in fact being at nearly 90 degrees from each other in the high-
dimensional function space).

Starting from Hypothesis H2, Observation O4 and Observation O5 bring us
to the formulation of new hypothesis:

Hypothesis H4. Learning of a single human learner is limited by
effective local minima.

We used the phrase “single human learner” because later in this paper we will
hypothesize that a collection of human learners and the associated evolution of their
culture can help to get out of what would otherwise be effective local minima.

Combining the above observations with the worse results sometimes observed
when training deeper architectures (Observation O3, discussed above), we come to
the following hypothesis.

3 containing in its elements the concatenation of the network outputs on the test examples.
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Hypothesis H5. The detrimental effect of local minima tends to be
more pronounced when training deeper architectures (by an opti-
mization method based on iteratively descending the training crite-
rion).

Finally, the presumed ability of deeper architectures to represent higher-level ab-
stractions more easily than shallow ones (see Bengio (2009) and discussion at the
beginning of this section) leads us to a human analogue of Hypothesis H5, which
refines Hypothesis H4:

Hypothesis H6. A single human learner is unlikely to discover
high-level abstractions by chance because these are represented by
a deep sub-network in the brain.

5 Brain to Brain Transfer of Information to Escape Local
Minima

If the above hypotheses are true, one should wonder how humans still manage to
learn high-level abstractions. We have seen that much better solutions can be found
by a learner if it is initialized in an area from which gradient descent leads to a
good solution, and genetic material might provide enough of a good starting point
and architectural constraints to allow learning of some abstractions. For example,
this could be a plausible explanation for some visual abstractions (including simple
face detection, which newborns do) and visual invariances, which could have had
the chance to be discovered by evolution (since many of our evolutionary ancestors
share a similar visual system). Recent work on learning algorithms for computer
vision also suggest that architectural constraints can greatly help performance of
a deep neural network (Jarrett et al., 2011), to the point where even random pa-
rameters in the lower layers (along with appropriate connectivity) suffice to obtain
reasonably good performance.

5.1 Labeled Examples as Hints

However, many of the abstractions that we master today have only recently (with
respect to evolutionary scales) appeared in human cultures, so they could not have
been evolved: each of them must have been discovered by at least one human at
some point in the past and then been propagated or improved as they were passed
from generation to generation. We will return later to the greater question of the
evolution of ideas and abstractions in cultures, but let us first focus on the mechanics
of communicating good synaptic configurations from one brain to another. Because
we have a huge number of synapses and their values only make sense in the context
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of the values of many others, it is difficult to imagine how the recipe for defining
individual abstractions could be communicated from one individual to another in a
direct way (i.e. by exchanging synaptic values). Furthermore, we need to ask how
the hypothesized mechanism could help to escape effective local minima faced by a
single learner.

The main insight to answering this question may come from Observation O1
and Observation O2. Training a single layer neural network (supervised or unsu-
pervised) is much easier than training a deeper one, so if one can provide a hint as to
the function that deeper layers (corresponding to higher-level abstractions) should
capture, then training would be much easier. In the extreme, specifying how partic-
ular neurons should respond in specific instances is akin to supervised learning.

The idea that we propose based on these premises relies on learning agents ex-
changing bits of information in the presence of a shared percept. Communicating
about the presence of a concept in a sensory percept is something that humans do,
and benefit from since their youngest age. The situation is illustrated in Figure 5.
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Fig. 5 Illustration of the communication between brains, typically through some language, in a
way that can give hints to higher levels of one brain of how the concepts are represented in higher
levels of another brain.

5.2 Language for Supervised Training

A very simple schema that would allow to communicate a concept4 from one brain
to another is one in which there are many encounters between pairs of learners.

4 i.e., the characterization of the concept as a function that associates its presence with with all the
sensory configurations that are compatible with it,
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In each of them, two learners are faced with a similar percept (e.g., they both see
the same scene) and they exchange bits of information about it. These bits can for
example be indicators of the presence of high-level concepts in the scene. These in-
dicators may reflect the neural activation associated with these high-level concepts.
In humans, these bits of information could be encoded through a linguistic conven-
tion that helps the receiver of the message interpret them in terms of concepts that
it already knows about. One of the most primitive cases of such a communication
scenario could occur with animal and human non-verbal communication. For exam-
ple, an adult animal sees a prey that could be dangerous and emits a danger signal
(that could be innate) that a young animal could use as a supervised training signal
to associate the prey to danger. Imitation is a very common form of learning and
teaching, prevalent among primates, and by which the learner associates contexts
with corresponding appropriate behavior. A richer form of communication, which
would already be useful, would require simply naming objects in a scene. Humans
have an innate understanding of the pointing gesture that can help identify which
object in the scene is being named. In this way, the learner could develop a reper-
toire of object categories which could become handy (as intermediate concepts) to
form theories about the world that would help the learner to survive better. Richer
linguistic constructs involve the combination of concepts and allow the agents to de-
scribe relations between objects, actions and events, sequences of events (stories),
causal links, etc., which are even more useful to help a learner form a powerful
model of the environment.

This brings us to another hypothesis, supported by Observation O2 and Obser-
vation O1 and following from Hypothesis H6:

Hypothesis H7. A human brain can learn high-level abstractions if
guided by the signals produced by other humans, which act as hints
or indirect supervision for these high-level abstractions.

This hypothesis is related to much previous work in cognitive science, such as
for example cognitive imitation (Subiaul et al., 2004), which has been observed in
monkeys, and where the learner imitates not just a vocalization or a behavior but
something more abstract that corresponds to a cognitive rule.

5.3 Learning by Predicting the Linguistic Output of Other Agents

In the schema of Figure 5, it is not necessary for the emitter (who produces the
utterance) to directly provide supervision to the high-level layers of the receiver
(who receives the communication and can benefit from it). A similar effect can be
achieved indirectly by simply making sure that the receiver’s brain include in its
training criterion the objective of predicting what it observes, which includes the
linguistic output of the emitter in the context of the shared input percept. Since we
have already assumed that the training criterion for human brains involves a term for
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prediction or maximum likelihood, this could happen naturally, or be enhanced by
innate reinforcement (e.g. children pay particular attention to the utterances of their
parents). Hence the top-level hidden units of the receiver would receive a training
signal that would encourage them to become good features as input to a sub-network
that would map these concept-level features to units that represent the probability
distribution of utterances that are received (see Figure ??. The same process could
work for verbal or non-verbal communication, but using different groups of neurons
to model the associated observations. In terms of existing learning algorithms one
could for example imagine the case of a Deep Boltzmann Machine (Salakhutdinov
and Hinton, 2009b): the linguistic units get ’clamped’ by the external linguistic
signal received by the learner, at the same time as the lower-level sensory input
units get ’clamped’ by the external sensory signal, and that conditions the likelihood
gradient received by the hidden units, encouraging them to model the interactions
between all of these, and in particular the joint distribution of linguistic units and
sensory units.

One could imagine many more sophisticated communication schemes that go
beyond the above scenario. For example, there could be a two-way exchange of
information. It could be that both agents can potentially learn something from the
other in the presence of the shared percept. It could be that there is no pre-assigned
role of teacher (as emitter) and student (as receiver), but that depending on the confi-
dence demonstrated by each agent for each particular percept, one pays more or less
attention to the communicated output of the other. It could be that some aspects of
the shared percept is well mastered by one agent but not the other, and vice-versa.
Humans have the capability to know that some aspect of a situation is surprising
(they would not have predicted it with high probability) and then they should ra-
tionally welcome “explanations” provided by others. A way to make the diffusion
of useful knowledge more efficient is for the communicating agents to keep track
of an estimated degree of “authority” or “credibility” of other agents. One would
imagine that parents and older individuals in a human group would by default get
more credit, and one of the products of human social systems is that different indi-
viduals acquire more or less authority and credibility. For example, scientists strive
to maximize their credibility through very rigorous communication practices and a
scientific method that insists on verifying hypotheses through experiments designed
to test them.

5.4 Language to Evoke Training Examples at Will

Even more interesting scenarios that derive from linguistic abilities involve our abil-
ity to evoke an input scene. We do not need to be in front of danger to teach about
it. We can describe a dangerous situation and mention what is dangerous about it.
In this way, the diffusion of knowledge about the world from human brains to other
human brains could be made even more efficient.
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The fact that verbal and non-verbal communication between animals and humans
happens through a noisy and very bandwidth-limited channel is important to keep in
mind. Because very few bits of information can be communicated probably means
that only the most useful elements should be communicated. If the objective is only
to maximize collective learning, it seems that there is no point in communicating
something that the receiver already knows. However, there may be other reasons
why we communicate, such as for smoothing social interactions, acquiring status or
trust, coordinating collective efforts, etc.

Track local minima 

 

Final solution 

 

Easy to find minimum 

 Fig. 6 A general strategy to reduce the impact of local minima is followed in continuation methods
and simulated annealing. The idea is to consider a sequence of optimization problems that start
with an easier one for which it is easy to find a global optimum (not corresponding to solving the
actual problem of interest, though), and ending up in the problem of interest, each time starting at
the solution previously found with an easier problem and tracking local minima along the way. It
was hypothesized (Bengio, 2009) that following a curriculum could help learners thus find better
solutions to the learning problem of interest.

5.5 Connection with Curriculum Learning

The idea that learning can be improved by guiding it, by properly choosing the se-
quence of examples seen by the learner, was already explored in the past. It was first
proposed as a practical way to train animals through shaping (Skinner, 1958; Peter-
son, 2004), as a way to ease simulated learning of more complex tasks (Elman, 1993;
Krueger and Dayan, 2009; Bengio et al., 2009) by building on top of easier tasks. An
interesting hypothesis introduced in Bengio et al. (2009) is that a proper choice of
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training examples can be used to approximate a complex training criterion5 fraught
with local minima with a smoother one (where, e.g., only prototypical examples
need to be shown to illustrate the “big picture”). By gradually introducing more
subtle examples and building on top of the already understood concepts (as is typi-
cally done in pedagogy), Bengio et al. (2009) propose that the learner goes through a
sequence of gradually more difficult learning tasks, in a way that corresponds in the
optimization literature to a continuation method or an annealing method, allowing to
approximately discover global minima (or much better local minima), as illustrated
in Figure 6. Interestingly, it was recently observed experimentally that humans use
a form of curriculum learning strategy (starting from easier examples and building
up) when they are asked to teach a concept to a robot (Khan et al., 2011). (Khan
et al., 2011) also propose a statistical reason why a curriculum learning strategy can
be more successful, having to do with the uncertainty that the learner has about the
relevant factors explaining the variations seen in the data. If these theories are cor-
rect, an individual learner can be helped (to escape local minima or converge faster
to better solutions) not only by showing examples of abstractions not yet mastered
by the learner, but also by showing these examples in an appropriate order. This or-
der corresponds to a curriculum that helps the learner build higher-level abstractions
on top of lower-level ones, thus again defeating some of the difficulty believed to
exist in training a learner to capture higher-level abstractions.

6 Memes, Cross-Over, and Cultural Evolution

In the previous section we have proposed a general mechanism by which knowl-
edge can be transmitted between brains, without having to actually copy synaptic
strengths. We hypothesized that such mechanisms could help an individual learner
escape an effective local minimum and thus construct a better model of reality, when
the learner is guided by the hints provided by other agents about relevant abstrac-
tions. But the knowledge had to come from another agent. Where did this knowledge
arise in the first place? This is what we discuss here.

6.1 Memes and Evolution from Noisy Copies

Let us first step back and ask how “better”6 brains could arise. The most plausible
explanation is that better brains arise due to some form of search or optimization (as
stated in Hypothesis H1), in the huge space of brain configurations (architecture,
function, synaptic strengths). Genetic evolution is a form of parallel search (with

5 the training criterion is here seen as a function of the learned parameters, as a sum of a loss over
a distribution of possible contexts or examples.
6 “better” in the sense of the survival value they provide, and how well they allow their owner to
understand the world around them.
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each individual’s genome representing a candidate solution) that occurs on a rather
slow time-scale. Cultural evolution in humans is also a form of search, in the space
of ideas or memes (Dawkins, 1976). A meme is a unit of selection for cultural evo-
lution. It is something that can be copied from one mind to another. Like for genes,
the copy can be imperfect. Memes are analogous to genes in the context of cultural
evolution. Genes and memes have co-evolved, although it appears that cultural evo-
lution occurs on a much faster scale than genetic evolution. Culture allows brains
to modify their basic program and also go beyond their ability to learn from ob-
serving the nature that surrounds them. Culture allows brains to take advantage of
knowledge acquired by other brains elsewhere and in previous generations.

To put it all together, the knowledge acquired by an individual brain combines
three sources of adaptation: genetic evolution (over hundreds of thousands of years
or more), cultural evolution (over dozens, hundreds or thousands of years), and in-
dividual learning and discovery (over minutes, hours and days). In all three cases, a
form of adaptation is at play, which we hypothesize to be associated with a form of
approximate optimization, in the same sense as stated in Hypothesis H1. One can
also consider the union of all three adaptation processes as a global form of evo-
lution and adaptation (see the work of Hinton and Nowlan (1989) on how learning
can guide evolution in the style of Baldwinian evolution). Whereas genetic evolu-
tion is a form of parallel search (many individuals carry different combinations and
variants of genes which are evaluated in parallel) and we have hypothesized that
individual learning is a local search performing an approximate descent (Hypoth-
esis H2), what about cultural evolution? Cultural evolution is based on individual
learning (a learner trying to predict the behavior and speech output of another in-
dividual, as stated in Hypothesis H7), which is local, but considering the graph of
interactions between humans in an evolving population, one must conclude that cul-
tural evolution, like genetic evolution, is a form of parallel search, as illustrated in
Figure 7.
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Fig. 7 Illustration of parallel search in the space of synaptic configurations by a population of
learners. Some learners start from configuration which happens to lead to a better solution when
descending the training criterion.

The most basic working principle of evolution is the noisy copy and it is also
at work in cultural evolution: a meme can be copied from one brain to another,
and the meme can sometime be slightly modified in the process. Selective pressure
then does the work of exponentially increasing the presence of successful memes
in the population, by increasing the chances that a successful meme be copied in
comparison with a competing less successful meme. This may happen simply be-
cause a useful meme allows its bearer to survive longer, communicate with more
individuals, or because better ideas are promoted. With genetic evolution, it is nec-
essary to copy a whole genome when the individual bearing it is successful. Instead,
cultural evolution in humans has mechanisms to evaluate an individual meme and
selectively promote it. Good ideas are more likely to be the subject of discussion in
public communication, e.g., in the public media, or even better in scientific publi-
cations. Science involves powerful mechanisms to separate the worth of a scientist
from the worth of his or her ideas (e.g. through independent replication of experi-
mental results or theoretical proofs, or through blind reviewing). That may explain
why the pace of evolution of ideas has rapidly increased since the mechanisms for
scientific discovery and scientific dissemination of memes have been put in place.
The fact that a good idea can stand on its own and be selected for its own value
means that the selective pressure is more efficient because it is less hampered by
the noisy evaluation that results when fitness is assigned to a whole individual, that
integrates many memes and genes.
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6.2 Fast-Forward with Divide-and-Conquer From Recombination

But if evolution only relied on the noisy copy principle, then it could only speed-up
search at best linearly with respect to the number of individuals in a population. In-
stead of trying N random configurations with N individuals and picking the best by
selective pressure, a population with M > N individuals would discover a good se-
lection M/N times faster in average. This is useful but we hypothesize that it would
not be enough to make a real dent in the optimization difficulty due to a huge number
of poor local minima in the space of synaptic configurations. In fact, evolution has
discovered an evolutionary mechanism which can yield much larger speed-ups, and
is based on sexual reproduction in the case of genetic evolution. With sexual repro-
duction, we have an interaction between two parent individuals (and their associated
candidate configurations), and we mix some of the genes of one with some of the
genes of the other in order to create new combinations that are not near-neighbors
of either parent. This is very different from a simple parallel search because it al-
lows to explore new configurations beyond local variations (i.e. it is not based on
local search), and most importantly, it allows to combine good, previously found,
sub-solutions. Maybe your father had exceptionally good genes for eyes and your
mother exceptionally good genes for ears, and with about 25% probability you could
get both, and this may confer you with an advantage that no one had had before.
This kind of transformation of the population of candidate configurations is called a
cross-over operator in the genetic algorithms literature (Holland, 1975). Cross-over
is a recombination mechanism: it allows to create new candidate solutions by com-
bining parts of previous candidate solutions. It has the potential for a much greater
speed-up than simple parallelized search based on individual local search (noisy
copy), because it can potentially exploit a form of divide-and-conquer (which, if
well done, could yield exponential speed-up). For the divide-and-conquer aspect of
the recombination strategy to work, it is best if sub-solutions that can contribute as
good parts to good solutions receive a high fitness score. The success rate of re-
combination is also important i.e., what fraction of the recombination offsprings are
viable? The encoding of information into genes has a great influence on this success
rate as well as on the fitness assigned to good sub-solutions. We hypothesize that
memes are particularly good units of selection in these two respects: they are by
definition the units of cultural information that can be meaningfully recombined to
form new knowledge. All these ideas are summarized in the following hypothesis.

Hypothesis H8. Language and the combination of old memes into
new memes provide an efficient evolutionary recombination oper-
ator, and this allows rapid search in the space of communicable
memes that help humans build up better high-level internal repre-
sentations of their world.
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6.3 Where do New Ideas Come from?

Where do completely new ideas (and memes) emerge? According to the views stated
here, they emerge from two intertwined effects. On the one hand, our brain can eas-
ily combine different memes into new memes which it inherited from other humans,
typically through linguistic communication and imitation. On the other hand, such
recombination as well as other creations of new memes can arise from the optimiza-
tion process taking place in a single brain, which tries to reconcile all the sources
of evidence that it received into some kind of unifying theory. This search is lo-
cal in parameter space (synaptic weights) but can involve a stochastic search in the
space of neuronal firing patterns. For example, in a Boltzmann machine, neurons
fire randomly but with a probability that depends on the activations of other con-
nected neurons, and so as to explore and reach more plausible “interpretations” of
the current and past observations (or “planning” for future actions in search for a
sequence of decisions that would give rise to most beneficial outcomes), given the
current synaptic strenghts. In this stochastic exploration, new configurations of neu-
ronal activation can randomly arise and if these do a better job of explaining the data
(the observations made), then synaptic strengths will change slightly to make these
configurations more likely in the future. This is already how some artificial neural
networks learn and “discover” concepts that explain their input. In this way, we can
see “concepts” of edges, parts of face, and faces emerge from a deep Bolzmann
machine that “sees” images of faces (Lee et al., 2009).

7 Future Work and Conclusion

A lot more needs to be done to connect the above hypotheses with the wealth of data
and ideas arising in the social sciences. They can certainly be refined and expanded
into more precise statements. Of central importance to future work following up
on this paper is how one could go and test these hypotheses. Although many of
these hypotheses agree with common sense, it might still be worthwhile verifying
them empirically, to the extent this is possible. It is also quite plausible that many
supporting experimental results from neuroscience, cognitive science, anthropology
or primatology already exist that support these hypotheses, and future work should
cleanly make the appropriate links.

To test Hypothesis H1 would seem to require estimating a criterion (not an obvi-
ous task) and verifying that learning improves it in average. A proxy for this criterion
(or its relative change, which is all we care about, here) might be measurable in the
brain itself, for example by measuring the variation in the presence of reward-related
molecules or the activity of neurons associated with reward. The effect of learning
could be tested by allowing more or less training trials with respect to a rewarding
task.

If Hypothesis H1 is considered true, testing the additional assumptions of Hy-
pothesis H2 is less obvious because it is difficult to measure the change in synaptic
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strengths in many places. However, a form of stability of synaptic strengths is a suf-
ficient condition to guarantee that the optimization has to proceed by small changes.

There is already evidence for Hypothesis H3 in the visual and auditory cortex,
in the sense that neurons that belong to areas further away from the sensory neurons
seem to perform a higher-level function. Another type of evidence comes from the
time required to solve different cognitive tasks, since the hypothesis would predict
that tasks requiring computation for the detection of more abstract concepts would
require more “iterations” in the recurrent neural network of the brain.

Hypothesis H4 and Hypothesis H6 are ethically difficult to test but are almost
corollaries of the previous hypotheses. An indirect source of evidence may come
from raising a primate without any contact with other primates nor any form of
guidance from humans, and measure the effect on operational intelligence at differ-
ent ages. One problem with such an experiment would be that other factors might
also explain a poor performance (such as the effect of psychological deprivation
from social support, which could lead to depression and other strong causes of poor
decisions), so the experiment would require a human that provides warmth and car-
ing, but no guidance whatsoever, even indirectly through imitation. Choosing a more
solitary species such as the orangutan would make more sense here (to reduce the
impacts due to lack of social support). The question is whether the tested primate
could learn to survive as well in the wild as other primates of the same species.

Hypothesis H7 could already be supported by empirical evidence of the effect
of education on intelligence, and possibly by observations of feral (wild) children.
The important point here is that the intelligence tests chosen should not be about
reproducing the academic knowledge acquired during education, but about deci-
sions where having integrated knowledge of some learned high-level abstractions
could be useful to properly interpret a situation and take correspondingly appropri-
ate decisions. Using computational simulations with artificial neural networks and
machine learning one should also test the validity of mechanisms for “escaping”
local minima thanks to “hints” from another agent.

Hypothesis H8 could probably be best tested by computational models where
we simulate learning of a population of agents that can share their discoveries (what
they learn from data) by communicating the high-level abstractions corresponding
to what they observe (as in the scenario of Section 5 and Figure 5. The question is
whether one could set up a linguistic communication mechanism that would help
this population of learners converge faster to good solutions, compared to a group
of isolated learning individuals (where we just evaluate a group’s intelligence by
the fitness, i.e. generalization performance, of the best-performing individual after
training). If such algorithms would work, then they could also be useful to advance
research in machine learning and artificial intelligence, and take advantage of the
kind of massive and loose parallelism that is more and more available (to compen-
sate for a decline in the rate of progress of the computing power accessible by a
single computer core). This type of work is related to other research on algorithms
inspired by the evolution of ideas and culture (see the Wikipedia entry on Memetic
Algorithms).
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If many of these hypotheses (and in particular the last one) is true, then we should
also draw conclusions regarding the efficiency of cultural evolution and how differ-
ent social structures may influence that efficiency, i.e., yielding greater group intel-
ligence in the long run. Two main factors would seem to influence this efficiency:
(1), the efficiency of exploration of new memes in the society, and (2), the rate of
spread of good memes. Efficiency of exploration in meme-space would be boosted
by a greater investment in scientific research, especially in high-risk high potential
impact areas. It would also be boosted by encouraging diversity it all its forms be-
cause it would mean that individual humans explore a larger region of meme-space.
For example, diversity would be boosted by a non-homogeneous education system,
a general bias favoring openness to new ideas and multiple schools of thought (even
if they disagree), and more generally to marginal beliefs and individual differences.
The second factor, the rate of spread of good memes, would be boosted by com-
munication tools such as the Internet, and in particular by open and free access to
education, information in general, and scientific results in particular. The investment
in education would probably be one of the strongest contributors of this factor, but
other interesting contributors would be social structures making it easy for every
individual to disseminate useful memes, .e.g., to publish on the web, and the opera-
tion of non-centralised systems of rating what is published (whether this is scientific
output or individual blogs and posts on the Internet), helping the most interesting
new ideas to bubble up and spread faster, and contributing both to diversity of new
memes and more efficient dissemination of useful memes.
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