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Main	goal:	minimize	expected	risk		
Expected risk: R(h) = E

(x,y)⇠p(x,y)
`(h(x), y)

where p(x, y) is the data distribution and

` is the loss on a particular example

R(h) ⇡ R̂test(h) =
1

mtest

X

(x,y)2test set

`(h(x), y)

R̂train(h) =
1

mtrain

X

(x,y)2train set

`(h(x), y)

attempt to learn by minimizing training error:

approximate with empirical risk on test set:



The	learning	problem	and	
generaliza2on	

R̂test

R̂train



Tradi2onal	Measures	of	Complexity	
h 2 H

R(h)  R̂train +Rm(H) +

s
ln 1

�

m

R(h)  R̂train +

s
VC(H) + ln 1

�

m

e.g.	class	of	neural	
networks	that	can	be	
represented	by	neural	
network	with	fixed	
architecture	

both	depend	on	
size	of	network	
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ImageNet	Performance		



Number	of	Hidden	Units:	
	Bad	Metric	for	Model	Complexity	

Neyshabur	et	al.	(2015)	



Number	of	Weights:	
	Bad	Metric	for	Model	Complexity	

Novak	et	al.	(2018)	



Number	of	Weights:	
	Bad	Metric	for	Model	Complexity	

Novak	et	al.	(2018)	



Outline	
Part	1:	Contradic2on	between	tradi2onal	
complexity	measures	and	over-parameteriza2on	
	
Part	2:	Bias-variance	decomposi2on	
	
Part	3:	Over-parameteriza2on	and	variance	
	
Part	4:	Zhang	et	al.	(2017)	via	bias-variance	
decomposi2on	



Reducible	and	Irreducible	Error	
y = f(x) + ✏

✏: noise with mean 0 and independent from S

S = {(x1, y1), (x2, y2), . . . , (xm, ym)}
hS : X ! Y (learned hypothesis)

f : X ! Y (true mapping)

E
S

E
✏

[R(h
S

)] = E
(x,y)

E
S

E
✏

[(h
S

(x)� y)2]

= E
(x,y)

E
S

[(h
S

(x)� f(x))2] + Var(✏)

reducible	
error	

irreducible	
error	Geman	et	al.	(1992)	



Bias-Variance	Decomposi2on	
Reducible error: E
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Geman	et	al.	(1992)	

E[R(h
S

)] = E
(x,y)

[Bias2(h
S

(x)) + Var(h
S

(x))] + Var(✏)



Bias-Variance	Intui2on	

E
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Abu-Mostafa	(2012)	



Interpreta2on	from	Ben	Recht	



Bias-Variance	vs.	Complexity	Measures	

•  2ght!	(equality)	
•  inherently	depends	on	
everything	
–  distribu2on	
–  learning	algorithm	
–  hypothesis	class	

•  empirical	expected	risk	
•  in	expecta2on	
•  no	explicit	dependence	
on	size	of	network	

•  extremely	general	
–  distribu2on	free	
–  learning	algorithm	free	

•  only	depends	on	training	
loss	and	hypothesis	class	

•  analy2cal	generaliza2on	
gap	

•  complexity	of	hypothesis	
class	grows	with	size	of	
network	

•  loose	inequality	



Original	paper	from	1992	

Title:	Neural	Networks	and	the	Bias/Variance	
Dilemma	

Neural	networks	are	“like”	nonparametric	models	
	
Experiments	to	show	similari2es	in	bias/variance	

Geman	et	al.	(1992)	



Experiments	with	nonparametric	models	
KNN	 Kernel	Regression	

Geman	et	al.	(1992)	



Experiments	with	neural	network	

Geman	et	al.	(1992)	



Something	wrong	with	this	picture	

Neyshabur	et	al.	(2015)	
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Triad	of	Observa2ons	

Over-parameteriza2on	
Phenomenon	

Bias-Variance	
Decomposi2on	



Intui2ons	fail	in	high	dimensions:	
High	dimensional	ball	example	

Guruswami	and	Kannan	(2012);	Blum	et	al.	(2018)	

volume of unit ball (d = 3):

4

3

⇡r3 =

4

3

⇡

area of unit circle (d = 2): ⇡r2 = ⇡

volume of d dimensional unit ball:

2⇡
d
2

d�(d2 )



Blessing	of	Dimensionality	

Donoho	(2000)	

concentra2on	of	measure	

1

n

X

P(|f(x)� E[f(x)]| � ✏) 
2 exp(�2✏n

2
)

something	like	

assumes	weights	
are	independent	

x1 x2 xn



Random	neural	networks	
have	low	variance	

1

n

X

last	hidden	layer	of	a	neural	network	

P(|hS(x)� E[hS(x)]| � ✏) 
2 exp(�2✏n

2
)

low	variance	

decreasing	with	width	

Recall: E[R(h
S

)] = E
(x,y)

[Bias2(h
S

(x)) + Var(h
S

(x))]



Over-parameteriza2on:	
Width	vs.	Depth	



Revisi2ng	Intui2ons	

Previous	slide	
suggests	variance	
should	be	
decreasing	with	
increasing	over-
parameteriza2on	



Randomness	Modeling	and	
Independence	Assump2ons	

•  Weights	are	random!	
–  randomness	in	data	sampling	
–  randomness	in	gradient	sampling	if	mini-batching	
–  randomness	in	ini2aliza2on	

•  Results	with	these	kinds	of	assump2ons	have	
surprising	degree	of	generality	in	mean	field	
theory	

•  Correla2ons	between	variables	diminishes	
with	increasing	dimensionality	

Related	work:	Choromanska	et	al.	(2015);	Schoenholz	et	al.	(2017);	
Pennington	and	Worah	(2017);	Pennington	and	Bahri	(2017)	



Preliminary	Empirical	Results	
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Zhang	et	al.	(2017)	Recap	

•  afacked	generaliza2on	
bounds	that	don’t	
depend	on	data	

•  can	arbitrarily	increase	
test	error	by	only	
changing	the	data	

•  bias-variance	
decomposi2on	doesn’t	
depend	on	data	



Zhang	et	al.	(2017):	
Via	Bias-Variance	Decomposi2on	

E[R(h
S

)] = E
(x,y)

[Bias2(h
S

(x)) + Var(h
S

(x))] + Var(✏)

Over-parameteriza2on	
Phenomenon	

Bias-Variance	
Decomposi2on	

Concentra2on	
of	Measure	



Future	Work	and	Connec2ons	

•  2ghter	random	matrix/network	bounds	
•  experiment	showing	decreasing	correla2on	
with	over-parameteriza2on	

•  derive	analog	in	analy2cal	learning	theory	
framework	

•  connec2on	to	stability	
•  think	about	if	any	PAC-Bayes	rela2on	
•  DL	Theory	Reading	Group	on	Mondays	at	1	



Thanks	for	coming!	



Appendix	
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Bias-Variance	Decomposi2on	
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