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Decomposition
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Main goal: minimize expected risk
Expected risk: |R(h)|= E ((h(z),y)

(z,y)~p(z,y)
where p(x,y) is the data distribution and

¢ is the loss on a particular example

approximate with empirical risk on test set:

R ~[R(]= —— 3 th(a),)

™m
test (z,y)Etest set

attempt to learn by minimizing training error:

Fuan= —— 3= £lh(z),9)

MMtrain

(x,y)Etrain set
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Traditional Measures of Complexity

heH

e.g. class of neural
networks that can be i< i
represented by neural @ @/ A
network with fixed |
architecture

R(h) < Rirain + m both depend on

. size of network
A In 5
R(h) S Rtrain [g%m (H)] o
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Traditional Measures of Complexity
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ImageNet Performance
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Number of Hidden Units:
Bad Metric for Model Complexity
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Number of Weights:
Bad Metric for Model Complexity
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Number of Weights:
Bad Metric for Model Complexity
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Part 2: Bias-variance decomposition



Reducible and Irreducible Error

y=f(x)+e f:X — )Y (true mapping)
e: noise with mean 0 and independent from S

S = {(3317 y1)7 (m27 y2)7 U (mma ym)}
hs : X — Y (learned hypothesis)

EE[R(hs)] = E EE[(hs(z) — y)?]

(z,y) S €
= E E[(hs(z) — f(z))?] + Var(e)
(z,y) S
reducible irreducible

Geman et al. (1992) error error




Bias-Variance Decomposition
Reducible error: [E ISE;[(hS(:I:) — f(2))?]

(z,y)

= E _<E[hs(l’)] - f(a:)>2 + Var(hs)_

(z,y) | \5

= E [Bias®’(hg(z)) + Var(hg(z))]

(z,y)

E[R(hs)] = E [Bias®(hs(x)) + Var(hs(z))] + Var(e)

(z,y)
Geman et al. (1992)




Bias-Variance Intuition

K

(z,y)

S

(E[hs(fb’)] - f(:::)) 2 + Var(hs)

E [Bias®(hg(x)) + Var(hg(z))]

(z,y)

Abu-Mostafa (2012)




Interpretation from Ben Recht
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Bias-Variance vs. Complexity Measures

tight! (equality)
inherently depends on
everything

— distribution

— learning algorithm

— hypothesis class

empirical expected risk
In expectation

no explicit dependence
on size of network

extremely general
— distribution free
— learning algorithm free

only depends on training
loss and hypothesis class
analytical generalization

gap

complexity of hypothesis

class grows with size of
network

loose inequality



Original paper from 1992

Title: Neural Networks and the Bias/Variance
Dilemma

Neural networks are “like” nonparametric models

Experiments to show similarities in bias/variance

Geman et al. (1992)




Experiments with nonparametric models

KNN Kernel Regression
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Experlments with neural network

0

The basic trend is what we expect: bias falls and variance increases
with the number of hidden units. The effects are not perfectly demon-
strated (notice, for example, the dip in variance in the experiments with

ToulEmor  the largest numbers of hidden units), presumably because the phenome-
non of overfitting is complicated by convergence issues and perhaps also
by our decision to stop the training prematurely. The lowest achievable
mean-squared error appears to be about 2.
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S
Geman et al. (1992)  # Hidden Units




Something wrong with this picture

MNIST
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Part 3: Over-parameterization and variance



Triad of Observations

Over-parameterization

Bias-Variance

Phenomenon Decomposition




Intuitions fail in high dimensions:
High dimensional ball example

area of unit circle (d = 2): mr =7

4 4
volume of unit ball (d = 3): §7r7“3 =57

volume of d dimensional unit ball;

Annulus of

1 —— width

Guruswami and Kannan (2012); Blum et al. (2018)




Blessing of Dimensionality

something like
concentration of measure = p(|f(z) — E[f(2)]| > €) <

J o\ 2 exp(—2en?)

assumes weights

@ are independent

OOO

0 00O

1 | 9 T,
Donoho (2000)




Random neural networks

have low variance
Recall: E|R(hg)] = E [Bias (hs(x)) + Var(hg(x))]

(x,y)
low variance

P(lhs(z) — Elhs(z

)
)\ 2 exp(—2en?)

@ decreasing with width
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Over-parameterization:
Width vs. Depth
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Error

Revisiting Intuitions

Optimum Model Complexity

Total Error

Variance

o

Model Complexity

Previous slide
suggests variance
should be
decreasing with
Increasing over-
parameterization



Randomness Modeling and
Independence Assumptions

* Weights are random!
— randomness in data sampling
— randomness in gradient sampling if mini-batching
— randomness in initialization

e Results with these kinds of assumptions have
surprising degree of generality in mean field
theory

 Correlations between variables diminishes
with increasing dimensionality

Related work: Choromanska et al. (2015); Schoenholz et al. (2017);
Pennington and Worah (2017); Pennington and Bahri (2017)




Variance

Preliminary Empirical Results

Variance vs. Hidden Layer Size on MNIST

Hidden Layer Size (log scale)
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Part 4: Zhang et al. (2017) via bias-variance
decomposition



Zhang et al. (2017) Recap

e attacked generalization
bounds that don’t
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Zhang et al. (2017):
Via Bias-Variance Decomposition

E[R(hg)] = (wa)[BiaSQ(hS(a:)) + Var(hs(z))] +|Var(e))
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Future Work and Connections

tighter random matrix/network bounds

experiment showing decreasing correlation
with over-parameterization

derive analog in analytical learning theory
framework

connection to stability

think about if any PAC-Bayes relation
DL Theory Reading Group on Mondays at 1




Thanks for coming!




Appendix



Reducible and Irreducible Error

[R(hs)] = IEIE: (xEy):(hS(x) — y)?] (squared loss)
— (E;y) [E[E;(hs(g;) —y)? (Fubini’s theorem)
- E EEl(hs(@) ~ (/@) + )’
— E EE[((hs(z) — f(x)) =€)’
(z,y) S €
= E EE[(hs(x) ~ [@)* + € — 2(hs(x) ~ ()
= E EE((hs(z) — f(2))" +€]



Bias-Variance Decomposition

E E[(hs(z) — f(z))?]

(z,y) S
= E Blhs(2)’ ~ 2hs(2)f () + (2]
_ (Ey)lg hg(:c)2 — 2hg(x) f(x) + f(a;)2 + (Ig[hs(a?)]Q — E[hs(x)]Q)]
= E (Ig[hs(w)] —f (:E)) + Vaf(hs)]

= K []_Biasz(hg(x))+Var(hs(90))]

(z,y)



