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Unit testing and static type checking are tools for ensuring defect free 

software. Unit testing is the practice of writing code to test individual units of a piece of 

software. By validating each unit of software, defects can be discovered during 

development. Static type checking is performed by a type checker that automatically 

validates the correct typing of expressions and statements at compile time. By validating 

correct typing, many defects can be discovered during development. Static typing also 

limits the expressiveness of a programming language in that it will reject some programs 

which are ill-typed, but which are free of defects. 

Many proponents of unit testing claim that static type checking is an 

insufficient mechanism for ensuring defect free software; and therefore, unit testing is 

still required if static type checking is utilized. They also assert that once unit testing is 

  



 xi

utilized, static type checking is no longer needed for defect detection, and so it should be 

eliminated. 

The goal of this research is to explore whether unit testing does in fact obviate 

static type checking in real world examples of unit tested software. 
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CHAPTER I  

 

 

INTRODUCTION 

 

 

Background 

 

A major concern for computer programmers is ensuring that software they 

create is free from defects. Common tools for ensuring defect free software are unit 

testing [1] and static type checking [2].  

Unit testing is a process for testing individual units of code to ensure that their 

behavior is correct. The first step in the process of unit testing is to identify a unit of 

code. A unit of code could be a function, a method of an object, or a small class. Then 

one or more tests are written for the identified unit. Each test will verify that for some 

predefined input, the actual output corresponds to the expected output. It is unlikely that 

the tests for a particular unit will validate all possible inputs and their corresponding 

outputs. The tests, however, at a minimum should test the edge cases. For example, if one 

wanted to write unit tests for a function that performs multiplication on two integers, it 

would be impractical to test every possible integer input combination and verify the 

correct output. It would, therefore, be advisable to test the edge cases for multiplication 

such as combinations of 0, 1, large numbers, and negative numbers. See Figure 1 for an 

example of unit testing for the multiply function. 

Once sufficient tests have been written for a given unit, the process is repeated 

for another identified unit. A common goal when writing unit tests is to achieve full code 
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  1  #!/usr/bin/python        

  2             

  3  import unittest,random,sys       

  4             

  5  def multiply(a,b):        

  6      """ Multiply two numbers together. """    

  7      return a*b         

  8             

  9  class TestMultiply(unittest.TestCase):     

  10            

  11     def setUp(self):        

  12         random.seed()        

  13            

  14     def rand(self):        

  15         return random.randint(0, sys.maxint)    

  16            

  17     def test_multiply(self):       

  18         """ Test multiply function """     

  19            

  20         # 0 multiplied with any number is still 0   

  21         self.assertTrue(0==multiply(0,0))     

  22         self.assertTrue(0==multiply(0,1))     

  23         self.assertTrue(0==multiply(0,self.rand()))   

  24                   

  25         # 1 multiplied with any number is that number   

  26         self.assertTrue(0==multiply(1,0))     

  27         self.assertTrue(1==multiply(1,1))     

  28         a = self.rand()       

  29         self.assertTrue(a==multiply(1,a))     

  30         self.assertTrue(-a==multiply(1,-a))    

  31            

  32         # Test negative number rules     

  33         p = self.rand()       

  34         n0 = -self.rand()       

  35         n1 = -self.rand()       

  36         n2 = -self.rand()       

  37         self.assertTrue(0>=multiply(p, n0))    

  38         self.assertTrue(0<=multiply(n1,n2))    

  39            

  40         # a*b == b*a        

  41         b = self.rand()       

  42         self.assertTrue(multiply(a,b)==multiply(b,a))   

  43            

  44         # A hard-coded tests       

  45         self.assertTrue(99==multiply(11, 9));    

  46            

  47 if __name__ == '__main__':       

  48     unittest.main()        

 

Fig. 1.  Example of unit testing the multiply function 

 

coverage. Full code coverage indicates that the unit tests will execute each line of the 

program’s source code at least once. Unit tests are executed to discover any regression 

defects whenever the software has been modified. With test-first development, the unit 
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tests are implemented before the unit of code that they test is written. This helps ensure 

that the unit tests are complete and that the behavior of the unit of code has been fully 

specified before it is written. A major benefit of unit testing is catching defects while the 

software is being developed and detecting errors that may be introduced by later 

enhancements to the software. 

The second tool, static type checking, automatically validates the correct 

typing of expressions and statements at compile-time. Software that complies with the 

rules of a given type system are called well-typed. Software that fails to comply with the 

type system rules are called ill-typed. Ill-typed software is rejected by the type checker 

and will not be compiled or executed. Static type checking is beneficial in that it can 

detect at compile-time many errors that would be manifest at run-time. This enables the 

programmer to fix the errors before the software fails at run-time. 

Static type checking does have its limitations. One such limitation is that it 

can sometimes reject ill-typed software that would never fail at run-time. This limitation 

may force programmers to avoid some programming constructs or have to rewrite 

portions of a program for the sole purpose of appeasing the overly restrictive type 

checker. Figure 2 shows an example of a type error that would not fail at run-time. 

An alternative type checking approach is dynamic type checking. With 

dynamic type checking, all type checks happen at run-time. Run-time type checking 

ensures that no programs are unnecessarily rejected, but it also forgoes the safety of 

compile-time type checking. By omitting compile-time type checking many type errors 

will manifest themselves at run-time instead of at compile-time [2]. 
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  1  struct _bar        

  2  {          

  3    int x;         

  4  } bar;         

  5            

  6  int foo(int a)        

  7  {          

  8    /* The "b" variable is guaranteed to be    

  9       assigned an even number */     

  10   int b = 2*a;        

  11           

  12   /* If the "b" variable is even then line   

  13      #17 will be executed */      

  14   if (0 == b % 2)       

  15   {         

  16     /* The next line will always be executed */   

  17     return b;        

  18   }         

  19   else         

  20   {         

  21     /* The C type checker will report a     

  22      * type error on the following line     

  23      * because it is returning a C structure   

  24      * instead of an integer, but this line    

  25      * will never be executed. */     

  26     return bar;       

  27   }         

  28 }          

 

Fig. 2.  An example of a benign type error 

 

Problem Statement 

 

Because some error detection can be done by both unit testing and static type 

checking, some proponents of dynamic type checking claim that static type checking is 

not needed [3]. The rationale of this argument is based on the observation that static type 

checking alone is insufficient to detect all errors that could be found with unit testing. For 

example, a function that is intended to multiply two integers, but instead performs 

addition on the integers will be well-typed even though the results are incorrect. Since 

static type checking is insufficient to validate program correctness, unit testing is still 

needed. Once unit testing has been employed, dynamic typing advocates claim that the 
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static type checking is no longer needed because unit testing will implicitly validate that 

the software is well-typed [3]. 

For instance, by writing unit tests to validate the output of a function that 

multiplies two integers, one has implicitly validated that the output of the multiply 

function is an integer. The act of unit testing statically typed software results in two 

separate and redundant mechanisms for ensuring that the software is well-typed. Because 

static type checking both rejects software that would never cause a run-time error and 

provides insufficient error detection, dynamic typing proponents argue it makes sense to 

eliminate the static type checking and rely solely on unit testing [3]. 

A counter claim to the above argument could be made by advocates of static 

type checking that some unit tests only validate whether the unit is well-typed. This 

validation can be performed automatically by static type checking: programmers would 

not need to write as many unit tests if static type checking is utilized. Additionally, in 

practice, full code coverage may not always be achieved with unit testing [1]. By utilizing 

static type checking, some errors may be detected in the portions of the software that are 

not covered by comprehensive unit tests. 

 

Purpose 

 

The purpose of this project is to determine some of the costs and benefits of 

applying static type checking to unit tested software. This may aid developers in 

determining whether they should utilize static type checking with their software projects. 

It may also aid programming language designers in determining whether adding static 

type checking to a programming language would be beneficial. In order to measure these 
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factors, this project aims to answer the following questions about real unit tested software 

written in a dynamically typed programming language. 

Do unit tests in practice negate the error detection benefits of static type 

checking?: This can be answered by verifying that dynamically typed, unit tested 

software is free from type errors. 

Do programmers frequently write unit tests that would not be needed if static 

type checking was applied?: This would indicate that programmers are manually type 

checking portions of their programs that could be automatically type checked with static 

typing. 

Do programmers commonly use programming constructs which would be 

rejected by static type checking but would not result in a run-time failure?: If dynamic 

programming constructs are commonly used, then it may not be possible to statically type 

check these programs without restricting the programming languages’ expressiveness. 

The answers to these questions help illuminate some of the costs and benefits 

of static type checking unit tested software for the purpose of error detection. 

 

Limitations 

 

It would be possible for programmers to write unit tests that would catch 

every error that could by caught by a type checker. This could be accomplished writing 

unit tests that implicitly or explicitly validate the type safety of every statement and 

expression in the software. It is likely, though, that real-world examples of unit testing 

lack this degree of thoroughness. This study is therefore limited to examining real-world 

examples of unit tested software to see whether type errors exist after unit testing. 
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The software chosen for examination included only projects with less than 

2000 source lines of code. This restriction enabled a greater number of projects to be 

examined. It is unknown whether the results of this study would vary if larger projects 

were examined. It is hoped that in the future other researchers will repeat this study on 

larger software projects. 

There are other benefits to unit testing beyond the ability to detect errors in 

software, such as better API design. There are also other benefits to static type checking 

beyond their ability to detect errors in software, such as more efficient execution. While 

those benefits are important they fall outside the scope of this study. For the remainder of 

this paper, any discussions of the benefits of unit testing and static type checking will 

refer solely to their ability to detect software errors.  
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CHAPTER II  

 

 

LITERATURE REVIEW 

 

 

There are several studies on the ability of static type checking to detect and, 

thereby, reduce errors in software. Gannon [4], Hanenberg [5], Prechelt, and Tichy [6] 

each conducted experiments where the participants were asked to solve a programming 

assignment in dynamically and statically typed programming languages. In each 

experiment, the resulting programs were analyzed for defects. Hanenberg’s experiment 

involved having participants write programs in one of two programming languages that 

were identical except one was statically typed and required explicit type declarations. 

Hanenberg concluded that there was no significant reduction in defects in the statically 

typed implementations over the dynamically typed implementations. Gannon’s 

experiment compared implementations in two similar but distinct programming 

languages. One language was statically typed and included some higher level 

abstractions, while the other was type-less. Gannon discovered a reduced defect count in 

the statically typed implementation. Prechelt and Tichy’s experiment was to have 

participants write programs that interacted with a complicated API in either ANSI C 

where the compiler type checks function interfaces or K&R C where it does not. They 

concluded that there was a reduction in defects when using static type checking when 

interacting with an unfamiliar API. 
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There also exist several papers describing efforts to add static typing to 

dynamically typed programming languages. Cannon’s [7] work showed that it may not be 

feasible to apply static typing to some dynamically typed programming languages for the 

purpose of improving performance without sacrificing language flexibility. Others such 

as Chen et al. [8], Furr, Foster, and Hicks [9], Hamlet [10], Henglein and Rehof [11] 

show that it is possible to apply static type checking for the purpose of error detection to 

dynamically typed languages. They applied static type checking by utilizing a 

combination of annotations, type inference [12], or by programmatically translating 

programs from a dynamically typed programming language (Scheme) to a statically 

typed programming language (ML).  

There is also a good deal of research on the benefits of unit testing. Ellims, 

Bridges, and Ince [13] measure the effects of applying unit testing to three distinct 

automotive applications. In all three cases, it was determined that unit testing discovered 

defects that were not found through other testing means. Their study provides valuable 

insight into the benefit of unit testing real-world software. 

Madeyski [14], Muller, and Hagner [15] performed experiments to determine 

whether different development practices would improve the effectiveness of unit testing 

in detecting errors. Madeyski’s experiment was with pair programming, where Muller 

and Hagner focused on test-first development. The researchers concluded that neither 

test-first development nor pair programming positively affected the ability of unit tests to 

detect program errors.  
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Simons and Thomson [16] discuss the proper way of measuring the 

effectiveness of unit testing. They argue that neither path and branch coverage nor the 

automation of generating unit tests are effective measurements. They assert that these 

measurements sidestep the core issue which is whether the unit tests properly test for 

correct behavior. They suggest that mutation testing is better because it tests whether 

random changes to the code are detected by the unit tests. 

The benefits of static type checking and unit testing have been thoroughly 

researched in isolation. A lack of published materials on whether there is any benefit to 

static type checking when unit testing is utilized indicates that this topic has not been 

systematically studied.
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CHAPTER III  

 

 

METHODOLOGY  

 

 

The basic process for determining the costs and benefits of applying static 

type checking to unit tested software was to first find examples of unit tested software 

written in a dynamically typed programming language; second, translate the software 

from the dynamically typed programming language to a statically typed programming 

language; and third, note any defects discovered by the static type checker during the 

translation process. 

In order to simplify the translation process, it was decided that all software 

projects selected for study should be limited to a single dynamically typed programming 

language. Programs would then be translated into a single statically typed programming 

language. 

The criteria for choosing the dynamically typed programming language of the 

software projects to study were: 

• The language should be dynamically typed 

• The language should have strong support for and a strong culture of unit testing 

• There should be a large corpus of open-source software freely available for study 

• The language should be well known and considered a good language among unit-

testing and dynamic typing proponents
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There are several programming languages that satisfy the above criteria; 

however, Python [17] was chosen over the other languages due to the author’s 

familiarity. 

The criteria for choosing the statically typed programming language were as 

follows:  

• The language should be statically typed 

• The language should be available on the same platforms as the previously selected 

Python programming language 

• The language should be strongly typed 

• The language should be popular and considered a good language among static 

typing proponents 

Haskell [18] was chosen as a language that satisfies the above criteria. 

The Python software projects for this study were located by searching on the 

Bitbucket [19] and the Google Project Hosting [20] source code hosting websites. These 

sites were used because they provide a wide selection of open source Python software 

projects. Individual projects on these sites were located by searching for “pure python” 

and “python libraries” using each site’s built in search capabilities. The “pure python” 

search term was used to try to eliminate Python projects that incorporated C or C++ code 

along with the Python code in the software. Since the purpose of this experiment was to 

test dynamically typed programming languages, testing a project that included code from 

the statically typed C or C++ programming languages could taint the results. The “python 

libraries” search term was used with the assumption that software libraries would be 
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more likely to have comprehensive unit tests than software applications. Both of these 

search terms resulted in several pages of matching projects on each site. From the 

returned search results, individual software projects were reviewed from randomly 

selected pages. The project source code was downloaded for the software projects that 

appeared to have unit tests and were written in pure Python. After the source code was 

downloaded, it was further analyzed using the cloc [21] utility. The cloc [21] utility is 

designed to count source code lines of code of a software project and to report which 

programming languages are used in the software. The cloc [21] utility helped verify that 

the selected software projects were written completely in Python and that each contained 

fewer than 2000 lines of code. Finally, the projects source code was manually examined 

to see if the project utilized some form of unit testing. When a project was found that 

passed the above tests, the translation process began. 

The translation process was the most time consuming and challenging aspect 

of this study. Great care had to be taken to ensure that the translated software accurately 

modeled the semantics of the original software. Ensuring an accurate translation was 

especially challenging due to the use of Python and Haskell as the respective dynamically 

typed and statically typed programming languages. 

Python is predominantly an object-oriented programming language, while 

Haskell is a purely functional programming language. Due to the different paradigms, the 

style of programming varies greatly between these two programming languages. Despite 

these differences, every effort was made during the translation process to not only 

completely preserve program semantics, but to also preserve as much syntactic similarity 
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as possible. Maintaining syntactic similarity was important for ensuring that a direct 

translation was achieved and that type errors were not accidentally introduced or removed 

due to unnecessary deviations from the original software. The syntactic similarities in the 

translation may also facilitate future audits by researchers who want to validate the 

results of this study. 

The first challenge that was encountered when translating Python code to 

Haskell was how to represent a Python class in Haskell. A simple solution for 

representing a class is to define a new data type that contains fields for each of the Python 

classes’ data members. Haskell allows developers to define new data types using the 

data keyword which defines a new type and also a value constructor for creating values 

of that type. Values created with the value constructor represent the Python objects in the 

Haskell translation. The Python class’ methods were defined by writing Haskell functions 

that took a value of the defined data type as the first argument. See Figures 3 and 4 for an 

example of a simple Python class and the respective Haskell representation. 

Python’s class inheritance was simulated in Haskell by defining a single data 

type with multiple value constructors. Each value constructor creates a value with distinct 

fields, but the values created by each value constructor all have the same type. Each 

Haskell value constructor contains fields for either the base class’ or a subclass’ data 

members. 

When a Python subclass is defined base class methods can be overridden. The 

decision on whether to call the base class variant or the subclass variant of the methods is 

determined at run-time via dynamic dispatch. This process is simulated in Haskell by 
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1  #!/usr/bin/python        

2             

3  # A simple class in Python       

4  class car():         

5    # The __init__ method        

6    def __init__(self, color):       

7      self.color = color        

8             

9    # The color method        

10   def color(self):        

11     return self.color        

12            

13   # The mpg method        

14   def mpg(self):         

15     return 45         

16            

17 # Construct a car object then call the mpg method.    

18 if __name__ == '__main__':       

19     c = car('red')        

20     # Note that car.mpg(c) is the same as c.mpg()    

21     print car.mpg(c)        

 

Fig. 3.  A simple Python class 

 

 

 

 

 

 

 
1  #!/usr/bin/runghc        

2             

3  -- A simple class in Haskell       

4  data Car = Car String        

5             

6  -- Function for constructing a new car     

7  -- This takes the place of the __init__ method    

8  car color = Car color        

9             

10 -- The color function        

11 color (Car color) = color       

12            

13 -- The mpg function        

14 mpg (Car _) = 45         

15            

16 -- Construct a car object then call the mpg method.   

17 main =          

18     let c = car "red"        

19     in print (mpg c)        

 

Fig. 4.  A translation of the Python class to Haskell 
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defining a single function which contains the functionality of both the base class and 

subclass methods. Which functionality is executed is determined at run-time by using 

pattern matching to select the desired functionality based on which value constructor was 

used to create the object. See Figures 5 and 6 for an example of Python inheritance and 

method overriding along with the respective Haskell translation. 

 

 

Another challenge in translating from Python to Haskell is that Python allows 

for mutation where Haskell is a purely functional language and, therefore, does not allow 

its variables to be mutated. This limitation was most frequently encountered when 

translating Python methods that modify the values of their data members. Mutation of an 

object’s data members was simulated in Haskell by having the translated method return a 

  1  #!/usr/bin/python        

  2             

  3  # A simple class in Python       

  4  class car():         

  5    # The __init__ method       

  6    def __init__(self, color):       

  7      self.color = color       

  8             

  9    # The color method        

  10   def color(self):        

  11     return self.color        

  12            

  13   # The mpg method        

  14   def mpg(self):        

  15     return 45         

  16            

  17 # Basic inheritance        

  18 class truck(car):        

  19   # The overridden mpg method      

  20   def mpg(self):        

  21     return 14         

  22            

  23 # Construct a truck object then call the mpg method.   

  24 if __name__ == '__main__':       

  25     t = truck('red')        

  26     print truck.mpg(t)       

 

Fig. 5.  An example of simple Python inheritance and method overriding 
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   1  #!/usr/bin/runghc        

   2             

   3  -- A simple class in Haskell      

   4  data Car = Car String       

   5           | Truck String -- Basic inheritance    

   6             

   7  -- Function for constructing a new car     

   8  -- This takes the place of the __init__ method    

   9  car color = Car color       

   10            

   11 -- The color function       

   12 color (Car color) = color       

   13            

   14 -- The mpg function        

   15 -- Both the truck and car variants are handled here   

   16 mpg c = case c of        

   17           (Car _) -> 45       

   18           (Truck _) -> 14       

   19            

   20 -- Function for constructing a new truck     

   21 -- This takes the place of the __init__ method    

   22 truck color = Truck color       

   23            

   24 -- Construct a car object then call the mpg method.   

   25 main =          

   26     let t = truck "red"       

   27     in print (mpg t)        

 

Fig. 6.  A translation of the Python classes and methods to Haskell 

 

new copy of the object with updated data member values. See Figures 7 and 8 for an 

example of a Python method that mutates its data members and the respective Haskell 

translation. 

In the above example the Python decrement method only returns the updated 

integer value. The Haskell version returns a tuple containing the updated integer value 

along with a value that represents the modified counter object. While at first it could 

seem counterproductive to modify the type signature of a method when the goal is to 

detect type errors, in practice it was simple to adapt the calling code to accommodate the 

additional return value. The change to the method type signature did not seem to hinder 

the detection of type errors. 
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 1  #!/usr/bin/python       

 2            

 3  # A simple class in Python      

 4  class counter():       

 5    # The __init__ method      

 6    def __init__(self, count):      

 7      self.count = count       

 8            

 9    # The decrement method      

 10   def decrement(self):       

 11     self.count -= 1       

 12     return self.count       

 13           

 14   # The value method       

 15   def value(self):       

 16     return self.count       

 17           

 18 # Create a counter and decrement the value twice   

 19 if __name__ == '__main__':      

 20     c = counter(9)       

 21     x = c.decrement()       

 22     y = c.decrement()       

 23     print counter.value(c)      

 

Fig. 7.  A python class with a method that mutates its data members 

 

 

 

 

 

 

 
  1  #!/usr/bin/runghc         

  2              

  3  -- A simple class in Haskell        

  4  data Counter = Counter Integer       

  5              

  6  -- Function for constructing a new counter     

  7  -- This takes the place of the __init__ method     

  8  counter count = Counter count       

  9              

  10 {- The decrement method returns        

  11 a tuple containing the current count and a new      

  12 data type value representing the mutated state -}    

  13 decrement (Counter count) = (count-1, (Counter (count-1)))   

  14             

  15 -- The value method         

  16 value (Counter count) = count       

  17             

  18 -- Create a counter and decrement the value twice    

  19 main = do          

  20 let c = counter 9         

  21     (x,c') = decrement c        

  22     (y,c'') = decrement c'        

  23     in print(value c'')        

 

Fig. 8.  A translation of the Python class in Haskell 
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 1  #!/usr/bin/python    

 2         

 3  # Generate RGBA color    

 4  def makeRgb(r,g,b,a=1.0):   

 5    return (r,g,b,a)    

 

Fig. 9.  A python function with a default argument 

 

 

 

 

 

 

 
 1  #!/usr/bin/runghc       

 2            

 3  -- Generate RGBA color       

 4  {- This variant of the function only takes    

 5     three arguments the 4th argument is     

 6     defaulted to 1.0 -}       

 7  makeRgb r g b = makeRgb' r g b 1.0     

 8            

 9  -- Generate RGB colors       

 10 {- This variant of the function takes all     

 11    four arguments -}       

 12 makeRgb' r g b a = (r,g,b,a)      

 

Fig. 10.  A Haskell translation of a function with a default argument 

 

 

It was also problematic to translate Python functions and methods that had 

default arguments. Haskell does not support the notion of default arguments. This was 

resolved by defining new Haskell functions for each variation of the required arguments. 

Each function variation was given a slightly different name from the original, and the 

appropriate function was called from other parts of the code. See Figures 9 and 10 for an 

example of a Python function with default arguments and the respective Haskell 

translation. 

The final challenge in translating the Python code to Haskell was the use of 

Python’s rich set of built in libraries. In some cases, Haskell provided a similar library 
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that could be used as a drop in replacement. When a similar Haskell library did not 

already exist, a replacement had to be implemented by defining Haskell functions and 

data structures that duplicated the Python interfaces. Many of these functions and data 

structures were able to be used in the translation of more than one programming project. 

Many of these translation strategies ignore many of the more powerful and 

idiomatic mechanisms (such as monads and type classes) of Haskell which would likely 

have resulted in a simpler translation that was less syntactically similar to the original 

Python code. By using these strategies, the resulting translation was syntactically similar 

to the Python code and, therefore, easier to verify that a correct translation was made. 

While each project was being translated, the Haskell code was continuously 

checked for type errors using the Haskell type checker. When the type checker reported a 

type error, the translation process was stopped, and the nature of the error was examined. 

The purpose of the examination was to determine whether the type error was benign or 

whether the type error could be manifest at runtime. This determination was made by 

analyzing the original Python software and by attempting to write a Python unit test that 

would trigger a runtime error. Once the nature of the error had been determined, the 

Haskell version of the program was minimally modified to remove the type error and the 

translation process continued.  

When the translation of a software project was completed, each individual unit 

test was manually examined to see if it could be eliminated from the statically typed 

version without sacrificing software verification.
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CHAPTER IV  

 

 

RESULTS 

 

 

In order to study potential error detection benefits of static type checking, four 

software projects were translated from Python to Haskell. During the translation process 

it became clear that a full understanding of the effect of applying static type checking to 

dynamically typed software would require a detailed description of each defect along 

with the scenarios that would cause each defect to be manifest at run time. The results 

and description of each project translation are detailed below. 

 

The Python NMEA Tookit 

 

The first project that was studied was the Python NMEA Toolkit [22]. The 

Python NMEA Toolkit is a library for communicating with GPS devices using the line 

oriented NMEA protocol. During the translation of this toolkit, several type errors were 

discovered. The first type error that was discovered by the translation process was in the 

parse_data method of the Gps class. See Figure 11 for relevant code from the 

parse_data method [22]. 

The parse_data method reads in all available NMEA sentences from an 

input device and then creates a Sentence object for each NMEA sentence. If a NMEA 

sentence is malformed, a ParseError exception is raised. The exception is caught by 

an exception handler within the parse_data method that tries to call a method named
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  # Project:      Python NMEA Toolkit    

  # Revision:     23:c3b4b4c61e3d     

  # File:         gps.py      

  # Class:        Gps      

  # Method:       parse_data     

           

  83  def parse_data(self):     

  ...         

  93      lines = self.port.read_buffered()   

  94      for line in lines:     

  95          try:       

  96               sentence = Sentence(line)   

  97          except ParseError, ex:    

  98               self.error_message(str(ex))   

  99          else:       

  ...         

 

Fig. 11.  The parse_data method from the Python NMEA Toolkit 

 

error_message. The error_message method is not defined, so a Python 

AttributeError is raised. Because the AttributeError is raised, all remaining 

available NMEA sentences are discarded. If the type error was corrected by defining the 

error_message method, only the malformed NMEA sentence would be discarded, 

and the rest of the sentences could be processed. One could argue that the original 

developer expected future developers who use this library to subclass the Gps class and 

provide a custom error_message method. This is an unlikely scenario, however, 

because the requirement to add a custom error_message method is not documented 

in the code. Furthermore, early revisions of the Gps class did include an implementation 

of the error_message method. The code was later re-factored, and the 

error_message method and references to it were removed. The most likely 

explanation is that this error was introduced during the refactoring process. While the 

Python NMEA Toolkit [22] did provide unit tests, none of the tests detected this defect. 

Had the unit tests included a test for malformed NMEA sentences, this type error would 
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 # Project:      Python NMEA Toolkit      

 # Revision:     23:c3b4b4c61e3d       

 # File:         gps.py        

 # Class:        Gps        

 # Method:       _parse_GSV       

            

 175  def _parse_GSV(self, sentence):      

 176      """ Parse "GPS Satellites in View" sentence """   

 177      totalMsgs = sentence.get_int(0)     

 178      msgNumber = sentence.get_int(1)     

 179      totalSats = sentence.get_int(2)     

 180      if msgNumber < totalMsgs:      

 181          satRange = 4        

 182      else:         

 183          satRange = totalSats - ((msgNumber - 1) * 4)   

 ...           

 

Fig. 12.  The _parse_GSV method from the Python NMEA Toolkit 

 

 

have almost certainly been discovered. The Haskell type checker was able to discover 

this error at compile time. 

The second type error was found in the _parse_GSV method of the Gps 

class. See Figure 12 for relevant code from the _parse_GSV method [22]. 

The method takes in a Sentence object and uses the Sentence object’s 

get_int method to retrieve the first three NMEA sentence fields. The get_int 

method returns the fields as integers unless the field is empty in which case the method 

may return the Python None object. See Figure 13 for the get_int method [22]. 

The _parse_GSV method uses the values returned by get_int in 

mathematical expressions. Because basic mathematical operators are not defined for the 

Python None object, empty fields may result in the raising of the TypeError 

exception. Because only empty fields in a NMEA sentence will cause the type error to be 

manifest at run time, full unit test code coverage of the _parse_GSV method may not 
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 # Project:      Python NMEA Toolkit    

 # Revision:     23:c3b4b4c61e3d     

 # File:         parse.py      

 # Class:        Sentence      

 # Method:       get_int      

          

 104  def get_int(self, index, default=None):   

 105      """ Get an int item """     

 106      value = self._words[index]    

 107      if len(value) == 0: return default   

 108      try:       

 109          return int(value)     

 110      except ValueError:     

 111          raise ParseError("Word is not an int")  

 

Fig. 13.  The get_int method from the Python NMEA Toolkit 

 

 

 
  # Project:      Python NMEA Toolkit     

  # Revision:     23:c3b4b4c61e3d      

  # File:         parse.py       

  # Class:        Sentence       

  # Method:       get_velocity      

            

  122  def get_velocity(self, index, default=None):   

  123      """ Get a velocity item """     

  124      return velocity(self.get_float(index, default))  

 

Fig. 14.  The get_velocity method from the Python NMEA Toolkit 

 

 

have detected this defect. The Haskell type checker detected the type error at compile 

time. 

The third type error discovered by the translation process is in the Sentence 

class’ get_velocity method. See Figure 14 for the get_velocity method [22]. 

The get_velocity method retrieves a NMEA sentence field using the 

get_float method. See Figure 15 for the get_float method [22]. 

The get_velocity method uses the results of the get_float call to 

construct a velocity object. See Figure 16 for relevant code from the velocity 

class [22]. 
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  # Project:      Python NMEA Toolkit     

  # Revision:     23:c3b4b4c61e3d      

  # File:         parse.py       

  # Class:        Sentence       

  # Method:       get_float      

            

  113     def get_float(self, index, default=None):   

  114         """ Get an float item """     

  115         value = self._words[index]    

  116         if len(value) == 0: return default   

  117         try:        

  118             return float(value)     

  119         except ValueError:      

  120             raise ParseError("Word is not a float")  

 

Fig. 15.  The get_float method from the Python NMEA Toolkit 

 

 

 

 

 

 

 
# Project:      Python NMEA Toolkit      

# Revision:     23:c3b4b4c61e3d       

# File:         _types.py        

# Class:        velocity        

           

164 class velocity(float):        

165     """ Speed value (default is knots to match nmea spec) """  

166            

...           

 

Fig. 16.  The velocity class declaration from the Python NMEA Toolkit 

 

 
The velocity class inherits from float and must be constructed with either a 

number or a string representation of a number. The get_float method like the 

get_int method can return a Python None object if the sentence field is empty. This 

results in a type error in the get_velocity method when it attempts to construct a 

velocity object with the Python None value. Like the previous type error full code 

coverage of the get_velocity method would not guarantee that this type error would 

be discovered. The Haskell type checker detected the type error at compile time. 



 

 

 

26 

 
# Project:      Python NMEA Toolkit  

# Revision:     23:c3b4b4c61e3d   

# File:         tcpport.py    

# Class:        TcpPort    

# Method:       close    

       

44  def close(self):    

45      """ Close the nmea port """  

46      if self.sock:    

47          self.sock.close()   

48          self.sock = None   

 

Fig. 17.  The close method of the TcpPort class from the Python NMEA Toolkit 

 

The final type errors in the Python NMEA Toolkit [22] are triggered when 

calling the fileno, read or write methods on a closed TcpPort object. The 

close method of the TcpPort class closes the underlying socket device and sets the 

self.sock member variable to None. See Figure 17 for the close method [22]. 

The fileno, read and write methods all may raise the 

AttributeError exception because all of these methods assume that self.sock is 

a valid socket and has not been assigned the None value. It is interesting to note that the 

close method does check for a None value, and so it is safe to call the close method 

on a closed TcpPort object. This type error is also interesting in that it will only be 

manifest if a developer chooses to call these methods after the connection has been 

closed. In other words, only by misusing the API will the error be manifest. While it is 

possible that raising the AttributeError is the behavior intended by the original 

developer, it can be argued that the developer should have provided a more meaningful 

error message. Even though it is impossible to know whether the current error handling 

mechanism is intentional, it is interesting to note that the Haskell type system would 

force the developer to consider the case of self.sock having a None value and to 
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  # Project:      Python NMEA Toolkit    

  # Revision:     23:c3b4b4c61e3d     

  # File:         _types.py     

  # Class:        satellite     

  # Method:       update      

           

  144 def update(self, value):     

  145     if isinstance(value, tuple):    

  146         (prn, elevation, azimuth, snr) = value  

  147         self.prn = prn     

  148         self.elevation = elevation   

  149         self.azimuth = azimuth    

  150         self.snr = snr     

  151     elif isinstance(value, satellite):   

  152         self.prn = value.prn    

  153         self.elevation = value.elevation   

  154         self.azimuth = value.azimuth   

  155         self.snr = value.snr    

  156     else:       

  157         raise ValueError     

 

Fig. 18.  The update method of the Sentence class from the Python NMEA Toolkit 

 

 

explicitly handle this scenario. This restriction by the Haskell type system would have 

likely resulted in a more descriptive error message. The code for the SerialPort class 

contains the same defects as the TcpSocket class. 

Unless the unit tests called one of these methods on a closed TcpSocket 

object, it is likely that full code coverage unit testing would not have discovered this 

defect. The Haskell type system was able to discover this defect. There is a run time error 

in the program that can be eliminated when static type checking is applied. The update 

method of the satellite class was written to explicitly throw a ValueError if it is 

passed an argument that is not either a satellite object or a tuple. See Figure 18 for 

the update method of the Sentence class [22]. 
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The Haskell type checker ensures that this method is called with values of the 

appropriate type and so not only is the ValueError eliminated, the code can be 

simplified to remove the explicate type checks. 

After the Python NMEA Toolkit [22] was translated, the unit tests were 

examined. It was determined that two of the unit tests could safely be removed because 

they only tested for type safety. These two unit tests account for 8.7% of the unit tests. 

The Python NMEA Toolkit [22] did not use programming constructs which 

would be rejected by the Haskell type system, but would not result in a runtime error. 

It is clear that for the NMEA Toolkit, the unit tests did not negate the defect 

detecting benefits of static type checking. There were three type errors that were 

discovered that could be triggered due to malformed NMEA sentences and six type errors 

that could be triggered by misusing the API. Of these type errors, only one would be 

guaranteed to be discovered if the unit tests had full code coverage. There was 

additionally one run time error that could be eliminated and two unit tests which were not 

needed once static typing was applied. The toolkit did not utilize any dynamic code 

constructs that resulted in either benign type errors or code that was cumbersome to 

translate into a statically typed programming language. 

 

MIDIUtil 

 

The second project that was examined is the MIDIUtil [23] library. The 

MIDIUtil library is a Python library for writing MIDI files. A couple of type errors were 

discovered during the translation process. The first discovered type error was found in the 

__eq__ method of the GenericEvent class. The __eq__ method performs a 
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 # Project:      MIDIUtil       

 # Revision:     r10       

 # File:         MidiFile.py      

 # Class:        GenericEvent      

 # Method:       __eq__       

           

 56 def __eq__(self, other):      

 ...          

 90     if self.type == 'controllerEvent':    

 91         if self.parameter1 != other.parameter1 or \  

 92             self.parameter2 != other.parameter2 or \  

 93             self.channel != other.channel or \   

 94             self.eventType != other.eventType:   

 95             return False      

 

Fig. 19.  The __eq__ method of the GenericEvent class from the MIDIUtil library 

 

 

comparison on GenericEvent class and all known subtypes. It contains specialized 

code for the ControllerEvent subclass that compares a field named parameter2. 

This field does not exist in the ControllerEvent class, and so an 

AttributeError is raised. See Figure 19 for relevant code from the __eq__ method 

[23]. 

While the full history of the MIDIUtil library [23] is not available, it appears 

that the parameter2 member previously existed and was removed in later revisions. 

This library did provide unit tests, but none of the tests detected this defect. If the unit 

tests had compared two ConrollerEvent objects for equality, this defect would have 

been detected. The Haskell type checker was able to detect this error. 

The second type error in this library was found in the 

deInterleaveNotes method of the MIDITrack class. See Figure 20 for relevant 

code from the deInterleaveNotes method [23]. 
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   # Project:      MIDIUtil         

   # Revision:     r10          

   # File:         MidiFile.py         

   # Class:        MIDITrack         

   # Method:       deInterleaveNotes        

                

   549 def deInterleaveNotes(self):        

   ...             

   558  tempEventList = []          

   559  stack = {}            

   560                   

   561  for event in self.MIDIEventList:       

   562                   

   563    if event.type == 'NoteOn':        

   564      if stack.has_key(str(event.pitch)+str(event.channel)):    

   565        stack[str(event.pitch)+str(event.channel)].append(event.time)  

   566      else:           

   567        stack[str(event.pitch)+str(event.channel)] = [event.time]   

   568      tempEventList.append(event)        

   569    elif event.type == 'NoteOff':        

   570      if len(stack[str(event.pitch)+str(event.channel)]) > 1:   

   571        event.time = stack[str(event.pitch)+str(event.channel)].pop()  

   572        tempEventList.append(event)       

   573      else:           

   574        stack[str(event.pitch)+str(event.channel)].pop()    

   575        tempEventList.append(event)       

   576    else:           

   577      tempEventList.append(event)        

   ...             

 

Fig. 20.  The deInterleaveNotes method of the MIDITrack class from the 

MIDIUtil library 

 

The deInterleaveNotes method processes all the events in the 

self.MIDIEventList list. When a NoteOn event is encountered, information about 

the event is recorded in the stack dictionary object. When the corresponding NoteOff 

event is encountered, the information is retrieved from the stack dictionary. This 

method assumes that the NoteOn event comes before the NoteOff event in the 

self.MIDIEventList list. If a NoteOff event came before the corresponding 

NoteOn event then the len function would be called on a None value and a 

TypeError would be raised. The processEventList method places the NoteOn 

and NoteOff objects on the self.MIDIEventList list and then attempts to ensure 
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  # Project:      MIDIUtil         

  # Revision:     r10         

  # File:         MidiFile.py        

  # Class:        MIDITrack        

  # Method:       processEventList       

              

  293 def processEventList(self):        

  ...            

  303   for thing in self.eventList:       

  304     if thing.type == 'note':       

  305       event = MIDIEvent()        

  306       event.type = "NoteOn"        

  307       event.time = thing.time * TICKSPERBEAT     

  308       event.pitch = thing.pitch       

  309       event.volume = thing.volume       

  310       event.channel = thing.channel      

  311       event.ord = 3         

  312       self.MIDIEventList.append(event)      

  313             

  314       event = MIDIEvent()        

  315       event.type = "NoteOff"       

  316       event.time = (thing.time + thing.duration) * TICKSPERBEAT  

  317       event.pitch = thing.pitch       

  318       event.volume = thing.volume       

  319       event.channel = thing.channel      

  320       event.ord = 2         

  321       self.MIDIEventList.append(event)      

  ...            

  379     else:          

  380       print "Error in MIDITrack: Unknown event type"    

  381       sys.exit(2)         

  ...            

  383   # Assumptions in the code expect the list to be time-sorted.  

  384   # self.MIDIEventList.sort(lambda x, y: x.time - y.time)   

  385            

  386   self.MIDIEventList.sort(lambda x, y:\      

                                   int( 1000 * (x.time - y.time)))   

  387            

  388   if self.deinterleave:        

  389     self.deInterleaveNotes()       

 

Fig. 21.  The processEventList method of the MIDITrack class from the 

MIDIUtil library 

 

that NoteOn events come before NoteOff events by sorting all events by their time 

field in descending order. See Figure 21 for the relevant code from the 

processEventList method [23]. 

The time field of the NoteOff event is guaranteed to be greater than the 

time field of the NoteOn object as long as the duration field is positive. Because 
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the code does not prevent a user of the API from passing a negative duration field, it 

is possible for the NoteOff event to come before the NoteOn event and therefore cause 

the TypeError exception to be raised. It is likely that the original developer simply did 

not consider the effect of the user passing a negative duration value as a negative 

duration is nonsensical. The Haskell type system caught this type error and forces the 

developer to explicitly handle this error condition. While this library did have unit tests, 

none of them caught this error. Even if this library had full unit test code coverage, this 

defect would not have been caught unless one of the unit tests explicitly tested a negative 

duration value. 

A runtime error is eliminated when static type checking is applied is in the 

processEventList method. This method selects behavior based on the string value 

of the GenericEvent.type data member. See Figure 21 for the relevant code from 

the processEventList method. If the self.eventList contains an object of 

type GenericEvent, but is not handled in this method, then the 

processEventList will print an error message and exit. Haskell’s static type checker 

ensures at compile time that all GenericEvent variants are handled by the 

processEventList method. 

After the MIDIUtil [23] library was translated, the unit tests were examined. It 

was determined that none of the unit tests could be safely removed when static type 

checking was applied. 

The MIDIUtil [23] library uses the struct.pack and struct.unpack 

methods. These methods serialize Python values to binary data and binary data to Python 
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values respectively. The methods determine how to serialize the data based on a format 

string. Because the format string directs the serialization process, the type of the 

arguments to struct.pack and the type of the return value from from 

struct.unpack may vary. The variance in the types of arguments and return values 

resulted in the Haskell translation of these methods being rejected by the Haskell type 

checker even though the usage of these methods would not result in runtime errors. In 

order to work around this limitation, several Haskell pack and unpack methods were 

defined that each serialize a different data type. The pack and unpack methods are 

composed in the same order that is specified in the Python format string. While this 

approach does differ slightly from the Python mechanism, it is no less dynamic than the 

Python version. Hard-coding serialization methods into Haskell is no less flexible than 

hard-coding a format string in Python. 

For the MIDIUtil [23], unit testing did not negate the benefits of static type 

checking. While one of the type errors would have been discovered with full code 

coverage of unit testing, the second type error would likely have gone un-detected. 

Additionally, a runtime error was able to be eliminated. 

 

GrapeFruit 

 

The third project that was translated was the GrapeFruit [24] color 

manipulation library. GrapeFruit is a library for translating between various color systems 

(RGB, HSL, CMY, etc.). No type errors were discovered during the translation of this 

library. There was, however, one runtime error that could be eliminated with the 

application of Haskell’s static type checking. The Color class’ __init__ method 
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 # Project:      GrapeFruit       

 # Revision:     r31        

 # File:         grapefruit_test.py      

 # Class:        ColorTest        

 # Method:       testEq        

            

 208   def testEq(self):        

 ...           

 213     self.assertNotEqual(self.rgbCol, '(1.0, 0.5, 0.0, 1.0)')  

 

Fig. 23.  The testEq method of the ColorTest class from the GrapeFruit library 

 

 
 # Project:      GrapeFruit         

 # Revision:     r31          

 # File:         grapefruit.py         

 # Class:        Color          

 # Method:       __init__          

              

 273   def __init__(self, values, mode='rgb', alpha=1.0, wref=_DEFAULT_WREF):  

 ...             

 287     if not(isinstance(values, tuple)):       

 288       raise TypeError, 'values must be a tuple'      

 ...             

 

Fig. 22.  The __init__ method of the Color class from GrapeFruit [24] 

 

explicitly raises a TypeError exception if the values argument is not a tuple. See 

Figure 22 for the relevant code from the __init__ method. The Haskell static type 

checker can prevent this programming error at compile time. 

When the GrapeFruit [24] library’s unit tests were examined, a single unit test 

in the testEq method was discovered that could be removed after static typing was 

applied. This test simply verified that a string representation of a color tuple was not 

equivalent to the Color object in the self.rgbCol member. This test accounts for 

only 0.008% of the total unit tests. See Figure 23 for the unit test code [24]. 

This library did not use programming constructs that would not cause a 

runtime failure, but would be rejected by the Haskell type system. 
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# Project:      PyFontInfo      

# Revision:     6:290ce911500b     

# File:         PFI_Tables.py     

# Class:        NAME      

# Method:       parseChildren     

         

303     def parseChildren(self, fp):    

304         for i in range(0, self.data.count):  

...         

 

Fig. 24.  The parseChildren method of the NAME class from the PyFontInfo library 

 

The GrapeFruit [24] library’s unit tests did appear to negate the benefits of 

static type checking as no type errors were found. There was, however, a single runtime 

error that could be translated to a compile time error and a single unit test could be 

eliminated. 

 

PyFontInfo 

 

The final project that was translated was the PyFontInfo [25] library. This 

library is used to extract header information from font files. 

The first type errors that were discovered when translating this library to 

Haskell are found in the parseChildren methods of the TABLE_RECORD and NAME 

classes. See Figures 24 and 25 for the TABLE_RECORD and NAME class’ 

parseChildren methods [25]. 

The parseChildren methods reference data members of the object 

assigned to self.data. The self.data member is created in the TTF_HEADER 

parse method. See Figures 26 for the TTF_HEADER parse method [25]. 

While the parse method does call parseChildren after the self.data 

member has been created, if the parseChildren method were to be called directly 
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  # Project:      PyFontInfo     

  # Revision:     6:290ce911500b     

  # File:         PFI_Tables.py     

  # Class:        TABLE_RECORD     

  # Method:       parseChildren     

           

  91     def parseChildren(self, fp):    

  92         for i in range(0, self.data.numTables):  

  ...         

 

Fig. 25.  The parseChildren method of the TABLE_RECORD class from the 

PyFontInfo library 

 

 

 

 

 

 

 
 # Project:      PyFontInfo    

 # Revision:     6:290ce911500b    

 # File:         PFI_Tables.py    

 # Class:        TTF_HEADER    

 # Method:       parse     

         

 25     def parse(self, fp):    

 ...        

 35         self.data = self.tpl._make(x)  

 36         self.parseChildren(fp)   

 ...        

 

Fig. 26.  The parse method of the TTF_HEADER class from the PyFontInfo library 

 

 

without calling parse first, Python would raise an AttributeError when 

self.data was referenced. It is likely that the original developer intended for the 

parseChildren methods to only be called from the parse method, but neglected to 

enforce the restriction. The Haskell type system requires that the self.data member 

always exist and that the parseChildren methods handle the case where 

self.data attribute has not been initialized. The provided unit tests did not catch these 

errors. Even if full unit test code coverage had been provided, it would be possible for 

these type errors to go undetected. 
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 # Project:      PyFontInfo   

 # Revision:     6:290ce911500b   

 # File:         __init__.py   

 # Class:        PyFontInfo   

 # Method:       getPANOSE    

        

 68     def getPANOSE(self):   

 ...       

 78         return self.os2.PANOSE  

 

Fig. 27.  The getPANOSE method of the PyFontInfo class from the PyFontInfo 

library 

 

 

 

 

 

 

 
# Project:      PyFontInfo     

# Revision:     6:290ce911500b    

# File:         __init__.py    

# Class:        PyFontInfo     

# Method:       getOS2     

        

80     def getOS2(self):     

...        

86         return self.os2.data._asdict()  

 

Fig. 28.  The getOS2 method of the PyFontInfo class from the PyFontInfo library 

 

 

 

The next set of type errors are found in the getPANOSE, getOS2, 

getHead, getNames methods of the PyFontInfo class. See Figures 27, 28, 29 and 

30 for the getPANOSE, getOS2, getHead, getNames methods of the 

PyFontInfo class [25]. 

The getPANOSE and getOS2 methods each reference the self.os2 

member which is initialized in the PyFontInfo __init__ method if an “OS/2” 

record exists in the font file. See Figure 31 for the __init__ methods of the 

PyFontInfo class [25]. 
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   # Project:      PyFontInfo    

   # Revision:     6:290ce911500b    

   # File:         __init__.py    

   # Class:        PyFontInfo    

   # Method:       getHead     

           

   88     def getHead(self):    

   ...        

   94         return self.head.data._asdict()  

 

Fig. 29.  The getHead method of the PyFontInfo class from the PyFontInfo library 

 

 
# Project:      PyFontInfo    

# Revision:     6:290ce911500b   

# File:         __init__.py   

# Class:        PyFontInfo    

# Method:       getNames    

       

96     def getNames(self):    

...       

103         ret = self.name.UNICODE  

...       

 

Fig. 30.  The getNames method of the PyFontInfo class from the PyFontInfo library 

 

 
If an “OS/2” record does not exist and either the getPANOSE or getOS2 

methods are called, an AttributeError will be raised. The getHead and 

getNames methods reference the self.head and self.name members 

respectively. These members are initialized to None, but may be set to a HEAD or NAME 

object in the PyFontInfo __init__ method if a “head” or “name” record exists. If 

the respective records do not exist, and the getHead or getNames methods are called, 

an AttributeError will be raised. Even if full unit test code coverage had been 

provided, it would be possible for these defects to go undetected. 

There is a runtime error that can be eliminated when static type checking is 

applied. The __init__ method of the PyFontInfo class takes an argument that must 

be a string or a file-like object. If the argument is not one of these types, a 
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 # Project:      PyFontInfo       

 # Revision:     6:290ce911500b       

 # File:         __init__.py       

 # Class:        PyFontInfo       

 # Method:       __init__        

            

 34     def __init__(self, f):       

 ...           

 36         self.head = None       

 37         self.name = None       

 ...           

 39         try:         

 40             if type(f) == str:      

 41                 fp = open(f, 'rb')      

 42             elif type(f) == file:      

 43                 fp = f        

 44             else:        

 45                 raise PFI_Exceptions.BadFileType(f)   

 46         except IOError:       

 47             raise        

 ...           

 51         self.DefinedRecords = [i for i in table.children_map]  

 52         if 'head' in self.DefinedRecords:     

 ...           

 54             self.head = PFI_Tables.HEAD()     

 ...           

 57         if 'name' in self.DefinedRecords:     

 ...           

 59             self.name = PFI_Tables.NAME()     

 ...           

 62         if 'OS/2' in self.DefinedRecords:     

 ...           

 64             self.os2 = PFI_Tables.OS_2()     

 ...           

            

 

Fig. 31.  The __init__ method of the PyFontInfo class from the PyFontInfo library 

 

 
PFI_Exceptions.BadFileType exception is raised. While this check happens at 

runtime in the Python code, the Haskell type checker can perform this check at compile 

time. 

An additional error that was detected during the translation of the Python code 

to Haskell is found in the HMTX class. The HMTX class has a fmt data member that is 

used as a format string for a Python struct.unpack call. See Figure 32 for the HMTX 

class [25]. 
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   # Project:      PyFontInfo  

   # Revision:     6:290ce911500b 

   # File:         PFI_Tables.py  

   # Class:        HMTX   

         

   191 class HMTX(TTF_HEADER):  

   ...      

   198     fmt = '>?[]h[]'   

   ...      

   202      

 

Fig. 32.  The HTMX class from the PyFontInfo library 

 

 

The format string specified in the HMTX class is invalid, which result in a 

struct.error runtime error in the Python code. Due to the decision to use a sequence 

of unpacking functions in Haskell instead of a Python format string, this defect is 

changed from a runtime error to a compile time error in the Haskell translation. While 

this error in Python is not a type error, the restrictions of the Haskell static type checker 

required an implementation that transforms the runtime error into a type error. As was 

pointed out before, hard-coding a series of Haskell functions to unpack the binary data is 

no less inflexible than hard-coding a Python format string. 

After examining the unit tests, it was determined that a single unit test could 

be eliminated. See Figure 33 for the eliminated unit test [25]. 

The test attempted to construct a PyFontInfo object with an integer 

argument. PyFontInfo then calls open using the integer as the filename. This unit test 

is designed to make sure the PyFontInfo raises a Python TypeError exception when 

constructed with an integer argument. In the Haskell translation this is a type error. 

The unit tests provided by the PyFontInfo [25] did not negate the benefits of 

static type checking. There were six type errors that were discovered by the Haskell type 
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  # Project:      PyFontInfo  

  # Revision:     6:290ce911500b  

  # File:         test.py   

        

  23 test_files = []   

  ...      

  31 test_files.append(14)   

  32       

  33 for f in test_files:   

  ...      

  36     try:     

  37         info = PyFontInfo(f)  

  ...      

 

Fig. 33.  The eliminated PyFontInfo library unit test 

 

 

checker and two runtime errors that could be removed. There was a single unit test that 

only tested type safety that could be eliminated. 

Just like the MIDIUtil [23] library, the PyFontInfo [25] library uses the 

struct.pack and struct.unpack methods, which require some modification to 

work around the limitations of static type checking. In this library the work-around 

resulted in transforming the Python runtime error to a type error. Just like the MIDIUtil 

[23] library, the Haskell version is no less dynamic than the Python version.
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CHAPTER V  

 

 

CONCLUSION 

 

 

The translation of these four software projects from Python to Haskell proved 

to be an effective way of measuring the effects of applying static type checking to unit 

tested software. In the studied software projects, there were a total of four unit tests that 

could be removed from the Haskell translation because their sole function was to test for 

type safety. Because only a small subset of the total unit tests could be eliminated, it 

appears that the developers of these software projects did not spend a lot of time 

duplicating static type checking in the unit tests. 

None of the studied software projects utilized Python’s dynamic features in a 

way that made it difficult to translate the software to a statically typed programming 

language. Two of the software projects did use Python’s struct.pack and 

struct.unpack which were initially rejected by Haskell’s static type checker. 

However, with some minor modifications to the translation, it was possible to create type 

safe alternatives to these methods. 

The consequence of these first two observations is that all of the software 

projects could have easily been implemented in either a dynamically or statically typed 

programming languages with only minor differences. 

The final question this study attempted to address is whether unit testing in 

practice is a good substitution for static type checking. There were a total of 17 type 
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errors that were discovered when translating the four software projects. Only two of the 

17 type errors were guaranteed to be discovered with full unit test code coverage. Based 

on these results, the conclusion can be reached that while unit testing can detect some 

type errors, in practice it is an inadequate replacement for static type checking. 

The GrapeFruit [24] library stands out from the other studied projects in that it 

did not have any type errors. There are two notable factors that could contribute to the 

type safety of the GrapeFruit [24] library. First, the library’s unit test were more 

extensive than the other projects. As noted above, unit testing is not a replacement for 

static type checking, but full code coverage unit tests will detect some type errors. There 

is a second and perhaps more important difference between the GrapeFruit [24] library 

and the other software projects. The GrapeFruit [24] library was written such that each of 

the library’s variables will only be assigned values of a single type. Likewise, each of the 

library’s methods will only return values of a single type. In statically typed 

programming languages, the restriction of variables and return values to a single type is 

enforced by the type checker. Fifteen of the 17 type errors that were found in the other 

software projects were caused by variables that would hold or methods that would return 

values of differing types. By restricting the values held in variables and the values 

returned by methods to a single type, the developer of the GrapeFruit [24] library 

forfeited the benefits of dynamic typing in exchange for a the possibility of fewer code 

defects.
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CHAPTER VI  

 

 

FUTURE RESEARCH 

 

 

There are several opportunities for future research related to this study. 

Because the manual translation was time consuming and labor intensive, this study was 

limited to studying four software projects with less than 2000 lines of source code. 

Additional insights may be gained by studying a larger number of software projects 

including projects that contain more than 2000 lines of code. The efficiency of translating 

software from Python to Haskell may be improved by investing time in researching ways 

to fully or partially automate the translation process. 

During the translation process, it was discovered that it was beneficial to have 

both the Python code and the Haskell translation open side-by-side to ensure that a 

correct translation was being made. It was also beneficial to receive constant feedback on 

whether the Haskell translation was syntactically correct. This was accomplished by 

writing simple shell scripts that would constantly compile the Haskell translation and 

provide auditory feedback when the Haskell translation failed to compile. Future 

researchers may want to create similar tools to aid the translation process. 

Another interesting opportunity for future study would be to translate 

dynamically typed software projects into several different statically typed programming 

languages. Due to the variance of static type systems between different programming 
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languages, some type systems may be better suited than others at discovering defects in 

unit tested dynamically typed programming languages. 

No effort was put into understanding how static type checking and unit testing 

affects the speed of software development, or if either defect detecting system aided the 

developer in understanding the source code or designing the software. All of these issues 

may contribute to the overall cost and benefits of both unit testing and static type 

checking. 

It is hoped that this research project not only provides valuable insight into the 

practical limitations of unit testing as a replacement for static type checking, but also 

encourages further research into this topic.
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