

A QUANTITATIVE ANALYSIS OF WHETHER

UNIT TESTING OBVIATES STATIC TYPE

CHECKING FOR ERROR DETECTION

A Project

Presented

to the Faculty of

California State University, Chico

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

© Evan R. Farrer 2011

Spring 2011

A QUANTITATIVE ANALYSIS OF WHETHER

UNIT TESTING OBVIATES STATIC TYPE

CHECKING FOR ERROR DETECTION

A Project

by

Evan R. Farrer

Spring 2011

APPROVED BY THE DEAN OF GRADUATE STUDIES

AND VICE PROVOST FOR RESEARCH:

Katie Milo, Ed.D.

APPROVED BY THE GRADUATE ADVISORY COMMITTEE:

Abdel-Moaty Fayek

Graduate Coordinator

Anne Keuneke, PhD, Chair

Abdel-Moaty Fayek

 iii

PUBLICATION RIGHTS

This work by Evan Farrer is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 Unported License.

 iv

DEDICATION

For Emily, who has tirelessly maintained the household while I’ve frolicked in

academia. I’ll fix the sprinklers now; I promise.

 v

ACKNOWLEDGMENTS

A special thanks must be given to my Graduate Advisory Committee

members, Dr. Anne Keuneke and Professor Abdel-Moaty Fayek, who provided constant

feedback, encouragement and correction. Their advice not only strengthened this research

and paper, but also taught me valuable lessons, which will aid me in my future endeavors.

I must also thank my co-workers at Applied Signal Technology, Inc. who

provided early encouragement and feedback as I was exploring and developing ideas on

this research.

Finally, I must thank my wife Emily, who not only endured constant

ramblings about a topic she did not care to understand, but she also acted as my editor.

She corrected countless grammatical and punctuation errors. Any occurrences of

sentences in this paper that are grammatically correct and have correct punctuation are

because of her diligence. All errors in this paper are mine and mine alone.

 vi

TABLE OF CONTENTS

PAGE

Publication Rights.. iii

Dedication .. iv

Acknowledgements.. v

List of Figures .. vii

Abstract .. x

CHAPTER

 I. Introduction.. 1

 Background .. 1

 Problem Statement ... 4

 Purpose... 5

 Limitations ... 6

 II. Literature Review... 8

 III. Methodology.. 11

 IV. Results.. 21

 The Python NMEA Toolkit ... 21

 MIDIUtil .. 28

 GrapeFruit .. 33

 PyFontInfo ... 35

 V. Conclusion ... 42

 VI. Future Research ... 44

References.. 46

 vii

LIST OF FIGURES

PAGE

FIGURE

 1. Example of unit testing the multiply function 2

 2. An example of a benign type error .. 4

 3. A simple Python class.. 15

 4. A translation of the Python class to Haskell 15

 5. An example of simple Python inheritance and method overriding.... 16

 6. A translation of the Python classes and methods to Haskell 17

 7. A python class with a method that mutates its data members 18

 8. A translation of the Python class in Haskell 18

 9. A python function with a default argument 19

 10. A Haskell translation of a function with a default argument 19

 11. The parse_data method from the Python NMEA Toolkit........... 22

 12. The _parse_GSV method from the Python NMEA Toolkit........... 23

 13. The get_int method from the Python NMEA Toolkit 24

 14. The get_velocity method from the Python NMEA Toolkit 24

 15. The get_float method from the Python NMEA Toolkit 25

 16. The velocity class declaration from the Python NMEA Toolkit . 25

 17. The close method of the TcpPort class from the Python

 NMEA Toolkit ... 26

 viii

PAGE

FIGURE

 18. The update method of the Sentence class from the Python

 NMEA Toolkit ... 27

 19. The __eq__ method of the GenericEvent class from the

 MIDIUtil library... 29

 20. The deInterleaveNotes method of the MIDITrack class

 from the MIDIUtil library.. 30

 21. The processEventList method of the MIDITrack class

 from the MIDIUtil library ... 31

 22. The __init__ method of the Color class from GrapeFruit......... 34

 23. The testEq method of the ColorTest class from the

 GrapeFruit library .. 34

 24. The parseChildren method of the NAME class from the

 PyFontInfo library.. 35

 25. The parseChildren method of the TABLE_RECORD class

 from the PyFontInfo library... 36

 26. The parse method of the TTF_HEADER class from the

 PyFontInfo library.. 36

 27. The getPANOSE method of the PyFontInfo class from the

 PyFontInfo library.. 37

 28. The getOS2 method of the PyFontInfo class from the

 PyFontInfo library.. 37

 29. The getHead method of the PyFontInfo class from the

 PyFontInfo library.. 38

 30. The getNames method of the PyFontInfo class from the

 PyFontInfo library.. 38

 31. The __init__ method of the PyFontInfo class from the

 PyFontInfo library.. 39

 ix

PAGE

FIGURE

 32. The HTMX class from the PyFontInfo library 40

 33. The eliminated PyFontInfo library unit test....................................... 41

 x

ABSTRACT

A QUANTITATIVE ANALYSIS OF WHETHER

UNIT TESTING OBVIATES STATIC TYPE

CHECKING FOR ERROR DETECTION

by

© Evan R. Farrer 2011

Master of Science in Computer Science

California State University, Chico

Spring 2011

Unit testing and static type checking are tools for ensuring defect free

software. Unit testing is the practice of writing code to test individual units of a piece of

software. By validating each unit of software, defects can be discovered during

development. Static type checking is performed by a type checker that automatically

validates the correct typing of expressions and statements at compile time. By validating

correct typing, many defects can be discovered during development. Static typing also

limits the expressiveness of a programming language in that it will reject some programs

which are ill-typed, but which are free of defects.

Many proponents of unit testing claim that static type checking is an

insufficient mechanism for ensuring defect free software; and therefore, unit testing is

still required if static type checking is utilized. They also assert that once unit testing is

 xi

utilized, static type checking is no longer needed for defect detection, and so it should be

eliminated.

The goal of this research is to explore whether unit testing does in fact obviate

static type checking in real world examples of unit tested software.

 1

CHAPTER I

INTRODUCTION

Background

A major concern for computer programmers is ensuring that software they

create is free from defects. Common tools for ensuring defect free software are unit

testing [1] and static type checking [2].

Unit testing is a process for testing individual units of code to ensure that their

behavior is correct. The first step in the process of unit testing is to identify a unit of

code. A unit of code could be a function, a method of an object, or a small class. Then

one or more tests are written for the identified unit. Each test will verify that for some

predefined input, the actual output corresponds to the expected output. It is unlikely that

the tests for a particular unit will validate all possible inputs and their corresponding

outputs. The tests, however, at a minimum should test the edge cases. For example, if one

wanted to write unit tests for a function that performs multiplication on two integers, it

would be impractical to test every possible integer input combination and verify the

correct output. It would, therefore, be advisable to test the edge cases for multiplication

such as combinations of 0, 1, large numbers, and negative numbers. See Figure 1 for an

example of unit testing for the multiply function.

Once sufficient tests have been written for a given unit, the process is repeated

for another identified unit. A common goal when writing unit tests is to achieve full code

2

 1 #!/usr/bin/python

 2

 3 import unittest,random,sys

 4

 5 def multiply(a,b):

 6 """ Multiply two numbers together. """

 7 return a*b

 8

 9 class TestMultiply(unittest.TestCase):

 10

 11 def setUp(self):

 12 random.seed()

 13

 14 def rand(self):

 15 return random.randint(0, sys.maxint)

 16

 17 def test_multiply(self):

 18 """ Test multiply function """

 19

 20 # 0 multiplied with any number is still 0

 21 self.assertTrue(0==multiply(0,0))

 22 self.assertTrue(0==multiply(0,1))

 23 self.assertTrue(0==multiply(0,self.rand()))

 24

 25 # 1 multiplied with any number is that number

 26 self.assertTrue(0==multiply(1,0))

 27 self.assertTrue(1==multiply(1,1))

 28 a = self.rand()

 29 self.assertTrue(a==multiply(1,a))

 30 self.assertTrue(-a==multiply(1,-a))

 31

 32 # Test negative number rules

 33 p = self.rand()

 34 n0 = -self.rand()

 35 n1 = -self.rand()

 36 n2 = -self.rand()

 37 self.assertTrue(0>=multiply(p, n0))

 38 self.assertTrue(0<=multiply(n1,n2))

 39

 40 # a*b == b*a

 41 b = self.rand()

 42 self.assertTrue(multiply(a,b)==multiply(b,a))

 43

 44 # A hard-coded tests

 45 self.assertTrue(99==multiply(11, 9));

 46

 47 if __name__ == '__main__':

 48 unittest.main()

Fig. 1. Example of unit testing the multiply function

coverage. Full code coverage indicates that the unit tests will execute each line of the

program’s source code at least once. Unit tests are executed to discover any regression

defects whenever the software has been modified. With test-first development, the unit

3

tests are implemented before the unit of code that they test is written. This helps ensure

that the unit tests are complete and that the behavior of the unit of code has been fully

specified before it is written. A major benefit of unit testing is catching defects while the

software is being developed and detecting errors that may be introduced by later

enhancements to the software.

The second tool, static type checking, automatically validates the correct

typing of expressions and statements at compile-time. Software that complies with the

rules of a given type system are called well-typed. Software that fails to comply with the

type system rules are called ill-typed. Ill-typed software is rejected by the type checker

and will not be compiled or executed. Static type checking is beneficial in that it can

detect at compile-time many errors that would be manifest at run-time. This enables the

programmer to fix the errors before the software fails at run-time.

Static type checking does have its limitations. One such limitation is that it

can sometimes reject ill-typed software that would never fail at run-time. This limitation

may force programmers to avoid some programming constructs or have to rewrite

portions of a program for the sole purpose of appeasing the overly restrictive type

checker. Figure 2 shows an example of a type error that would not fail at run-time.

An alternative type checking approach is dynamic type checking. With

dynamic type checking, all type checks happen at run-time. Run-time type checking

ensures that no programs are unnecessarily rejected, but it also forgoes the safety of

compile-time type checking. By omitting compile-time type checking many type errors

will manifest themselves at run-time instead of at compile-time [2].

4

 1 struct _bar

 2 {

 3 int x;

 4 } bar;

 5

 6 int foo(int a)

 7 {

 8 /* The "b" variable is guaranteed to be

 9 assigned an even number */

 10 int b = 2*a;

 11

 12 /* If the "b" variable is even then line

 13 #17 will be executed */

 14 if (0 == b % 2)

 15 {

 16 /* The next line will always be executed */

 17 return b;

 18 }

 19 else

 20 {

 21 /* The C type checker will report a

 22 * type error on the following line

 23 * because it is returning a C structure

 24 * instead of an integer, but this line

 25 * will never be executed. */

 26 return bar;

 27 }

 28 }

Fig. 2. An example of a benign type error

Problem Statement

Because some error detection can be done by both unit testing and static type

checking, some proponents of dynamic type checking claim that static type checking is

not needed [3]. The rationale of this argument is based on the observation that static type

checking alone is insufficient to detect all errors that could be found with unit testing. For

example, a function that is intended to multiply two integers, but instead performs

addition on the integers will be well-typed even though the results are incorrect. Since

static type checking is insufficient to validate program correctness, unit testing is still

needed. Once unit testing has been employed, dynamic typing advocates claim that the

5

static type checking is no longer needed because unit testing will implicitly validate that

the software is well-typed [3].

For instance, by writing unit tests to validate the output of a function that

multiplies two integers, one has implicitly validated that the output of the multiply

function is an integer. The act of unit testing statically typed software results in two

separate and redundant mechanisms for ensuring that the software is well-typed. Because

static type checking both rejects software that would never cause a run-time error and

provides insufficient error detection, dynamic typing proponents argue it makes sense to

eliminate the static type checking and rely solely on unit testing [3].

A counter claim to the above argument could be made by advocates of static

type checking that some unit tests only validate whether the unit is well-typed. This

validation can be performed automatically by static type checking: programmers would

not need to write as many unit tests if static type checking is utilized. Additionally, in

practice, full code coverage may not always be achieved with unit testing [1]. By utilizing

static type checking, some errors may be detected in the portions of the software that are

not covered by comprehensive unit tests.

Purpose

The purpose of this project is to determine some of the costs and benefits of

applying static type checking to unit tested software. This may aid developers in

determining whether they should utilize static type checking with their software projects.

It may also aid programming language designers in determining whether adding static

type checking to a programming language would be beneficial. In order to measure these

6

factors, this project aims to answer the following questions about real unit tested software

written in a dynamically typed programming language.

Do unit tests in practice negate the error detection benefits of static type

checking?: This can be answered by verifying that dynamically typed, unit tested

software is free from type errors.

Do programmers frequently write unit tests that would not be needed if static

type checking was applied?: This would indicate that programmers are manually type

checking portions of their programs that could be automatically type checked with static

typing.

Do programmers commonly use programming constructs which would be

rejected by static type checking but would not result in a run-time failure?: If dynamic

programming constructs are commonly used, then it may not be possible to statically type

check these programs without restricting the programming languages’ expressiveness.

The answers to these questions help illuminate some of the costs and benefits

of static type checking unit tested software for the purpose of error detection.

Limitations

It would be possible for programmers to write unit tests that would catch

every error that could by caught by a type checker. This could be accomplished writing

unit tests that implicitly or explicitly validate the type safety of every statement and

expression in the software. It is likely, though, that real-world examples of unit testing

lack this degree of thoroughness. This study is therefore limited to examining real-world

examples of unit tested software to see whether type errors exist after unit testing.

7

The software chosen for examination included only projects with less than

2000 source lines of code. This restriction enabled a greater number of projects to be

examined. It is unknown whether the results of this study would vary if larger projects

were examined. It is hoped that in the future other researchers will repeat this study on

larger software projects.

There are other benefits to unit testing beyond the ability to detect errors in

software, such as better API design. There are also other benefits to static type checking

beyond their ability to detect errors in software, such as more efficient execution. While

those benefits are important they fall outside the scope of this study. For the remainder of

this paper, any discussions of the benefits of unit testing and static type checking will

refer solely to their ability to detect software errors.

8

CHAPTER II

LITERATURE REVIEW

There are several studies on the ability of static type checking to detect and,

thereby, reduce errors in software. Gannon [4], Hanenberg [5], Prechelt, and Tichy [6]

each conducted experiments where the participants were asked to solve a programming

assignment in dynamically and statically typed programming languages. In each

experiment, the resulting programs were analyzed for defects. Hanenberg’s experiment

involved having participants write programs in one of two programming languages that

were identical except one was statically typed and required explicit type declarations.

Hanenberg concluded that there was no significant reduction in defects in the statically

typed implementations over the dynamically typed implementations. Gannon’s

experiment compared implementations in two similar but distinct programming

languages. One language was statically typed and included some higher level

abstractions, while the other was type-less. Gannon discovered a reduced defect count in

the statically typed implementation. Prechelt and Tichy’s experiment was to have

participants write programs that interacted with a complicated API in either ANSI C

where the compiler type checks function interfaces or K&R C where it does not. They

concluded that there was a reduction in defects when using static type checking when

interacting with an unfamiliar API.

9

There also exist several papers describing efforts to add static typing to

dynamically typed programming languages. Cannon’s [7] work showed that it may not be

feasible to apply static typing to some dynamically typed programming languages for the

purpose of improving performance without sacrificing language flexibility. Others such

as Chen et al. [8], Furr, Foster, and Hicks [9], Hamlet [10], Henglein and Rehof [11]

show that it is possible to apply static type checking for the purpose of error detection to

dynamically typed languages. They applied static type checking by utilizing a

combination of annotations, type inference [12], or by programmatically translating

programs from a dynamically typed programming language (Scheme) to a statically

typed programming language (ML).

There is also a good deal of research on the benefits of unit testing. Ellims,

Bridges, and Ince [13] measure the effects of applying unit testing to three distinct

automotive applications. In all three cases, it was determined that unit testing discovered

defects that were not found through other testing means. Their study provides valuable

insight into the benefit of unit testing real-world software.

Madeyski [14], Muller, and Hagner [15] performed experiments to determine

whether different development practices would improve the effectiveness of unit testing

in detecting errors. Madeyski’s experiment was with pair programming, where Muller

and Hagner focused on test-first development. The researchers concluded that neither

test-first development nor pair programming positively affected the ability of unit tests to

detect program errors.

10

Simons and Thomson [16] discuss the proper way of measuring the

effectiveness of unit testing. They argue that neither path and branch coverage nor the

automation of generating unit tests are effective measurements. They assert that these

measurements sidestep the core issue which is whether the unit tests properly test for

correct behavior. They suggest that mutation testing is better because it tests whether

random changes to the code are detected by the unit tests.

The benefits of static type checking and unit testing have been thoroughly

researched in isolation. A lack of published materials on whether there is any benefit to

static type checking when unit testing is utilized indicates that this topic has not been

systematically studied.

11

CHAPTER III

METHODOLOGY

The basic process for determining the costs and benefits of applying static

type checking to unit tested software was to first find examples of unit tested software

written in a dynamically typed programming language; second, translate the software

from the dynamically typed programming language to a statically typed programming

language; and third, note any defects discovered by the static type checker during the

translation process.

In order to simplify the translation process, it was decided that all software

projects selected for study should be limited to a single dynamically typed programming

language. Programs would then be translated into a single statically typed programming

language.

The criteria for choosing the dynamically typed programming language of the

software projects to study were:

• The language should be dynamically typed

• The language should have strong support for and a strong culture of unit testing

• There should be a large corpus of open-source software freely available for study

• The language should be well known and considered a good language among unit-

testing and dynamic typing proponents

12

There are several programming languages that satisfy the above criteria;

however, Python [17] was chosen over the other languages due to the author’s

familiarity.

The criteria for choosing the statically typed programming language were as

follows:

• The language should be statically typed

• The language should be available on the same platforms as the previously selected

Python programming language

• The language should be strongly typed

• The language should be popular and considered a good language among static

typing proponents

Haskell [18] was chosen as a language that satisfies the above criteria.

The Python software projects for this study were located by searching on the

Bitbucket [19] and the Google Project Hosting [20] source code hosting websites. These

sites were used because they provide a wide selection of open source Python software

projects. Individual projects on these sites were located by searching for “pure python”

and “python libraries” using each site’s built in search capabilities. The “pure python”

search term was used to try to eliminate Python projects that incorporated C or C++ code

along with the Python code in the software. Since the purpose of this experiment was to

test dynamically typed programming languages, testing a project that included code from

the statically typed C or C++ programming languages could taint the results. The “python

libraries” search term was used with the assumption that software libraries would be

13

more likely to have comprehensive unit tests than software applications. Both of these

search terms resulted in several pages of matching projects on each site. From the

returned search results, individual software projects were reviewed from randomly

selected pages. The project source code was downloaded for the software projects that

appeared to have unit tests and were written in pure Python. After the source code was

downloaded, it was further analyzed using the cloc [21] utility. The cloc [21] utility is

designed to count source code lines of code of a software project and to report which

programming languages are used in the software. The cloc [21] utility helped verify that

the selected software projects were written completely in Python and that each contained

fewer than 2000 lines of code. Finally, the projects source code was manually examined

to see if the project utilized some form of unit testing. When a project was found that

passed the above tests, the translation process began.

The translation process was the most time consuming and challenging aspect

of this study. Great care had to be taken to ensure that the translated software accurately

modeled the semantics of the original software. Ensuring an accurate translation was

especially challenging due to the use of Python and Haskell as the respective dynamically

typed and statically typed programming languages.

Python is predominantly an object-oriented programming language, while

Haskell is a purely functional programming language. Due to the different paradigms, the

style of programming varies greatly between these two programming languages. Despite

these differences, every effort was made during the translation process to not only

completely preserve program semantics, but to also preserve as much syntactic similarity

14

as possible. Maintaining syntactic similarity was important for ensuring that a direct

translation was achieved and that type errors were not accidentally introduced or removed

due to unnecessary deviations from the original software. The syntactic similarities in the

translation may also facilitate future audits by researchers who want to validate the

results of this study.

The first challenge that was encountered when translating Python code to

Haskell was how to represent a Python class in Haskell. A simple solution for

representing a class is to define a new data type that contains fields for each of the Python

classes’ data members. Haskell allows developers to define new data types using the

data keyword which defines a new type and also a value constructor for creating values

of that type. Values created with the value constructor represent the Python objects in the

Haskell translation. The Python class’ methods were defined by writing Haskell functions

that took a value of the defined data type as the first argument. See Figures 3 and 4 for an

example of a simple Python class and the respective Haskell representation.

Python’s class inheritance was simulated in Haskell by defining a single data

type with multiple value constructors. Each value constructor creates a value with distinct

fields, but the values created by each value constructor all have the same type. Each

Haskell value constructor contains fields for either the base class’ or a subclass’ data

members.

When a Python subclass is defined base class methods can be overridden. The

decision on whether to call the base class variant or the subclass variant of the methods is

determined at run-time via dynamic dispatch. This process is simulated in Haskell by

15

1 #!/usr/bin/python

2

3 # A simple class in Python

4 class car():

5 # The __init__ method

6 def __init__(self, color):

7 self.color = color

8

9 # The color method

10 def color(self):

11 return self.color

12

13 # The mpg method

14 def mpg(self):

15 return 45

16

17 # Construct a car object then call the mpg method.

18 if __name__ == '__main__':

19 c = car('red')

20 # Note that car.mpg(c) is the same as c.mpg()

21 print car.mpg(c)

Fig. 3. A simple Python class

1 #!/usr/bin/runghc

2

3 -- A simple class in Haskell

4 data Car = Car String

5

6 -- Function for constructing a new car

7 -- This takes the place of the __init__ method

8 car color = Car color

9

10 -- The color function

11 color (Car color) = color

12

13 -- The mpg function

14 mpg (Car _) = 45

15

16 -- Construct a car object then call the mpg method.

17 main =

18 let c = car "red"

19 in print (mpg c)

Fig. 4. A translation of the Python class to Haskell

16

defining a single function which contains the functionality of both the base class and

subclass methods. Which functionality is executed is determined at run-time by using

pattern matching to select the desired functionality based on which value constructor was

used to create the object. See Figures 5 and 6 for an example of Python inheritance and

method overriding along with the respective Haskell translation.

Another challenge in translating from Python to Haskell is that Python allows

for mutation where Haskell is a purely functional language and, therefore, does not allow

its variables to be mutated. This limitation was most frequently encountered when

translating Python methods that modify the values of their data members. Mutation of an

object’s data members was simulated in Haskell by having the translated method return a

 1 #!/usr/bin/python

 2

 3 # A simple class in Python

 4 class car():

 5 # The __init__ method

 6 def __init__(self, color):

 7 self.color = color

 8

 9 # The color method

 10 def color(self):

 11 return self.color

 12

 13 # The mpg method

 14 def mpg(self):

 15 return 45

 16

 17 # Basic inheritance

 18 class truck(car):

 19 # The overridden mpg method

 20 def mpg(self):

 21 return 14

 22

 23 # Construct a truck object then call the mpg method.

 24 if __name__ == '__main__':

 25 t = truck('red')

 26 print truck.mpg(t)

Fig. 5. An example of simple Python inheritance and method overriding

17

 1 #!/usr/bin/runghc

 2

 3 -- A simple class in Haskell

 4 data Car = Car String

 5 | Truck String -- Basic inheritance

 6

 7 -- Function for constructing a new car

 8 -- This takes the place of the __init__ method

 9 car color = Car color

 10

 11 -- The color function

 12 color (Car color) = color

 13

 14 -- The mpg function

 15 -- Both the truck and car variants are handled here

 16 mpg c = case c of

 17 (Car _) -> 45

 18 (Truck _) -> 14

 19

 20 -- Function for constructing a new truck

 21 -- This takes the place of the __init__ method

 22 truck color = Truck color

 23

 24 -- Construct a car object then call the mpg method.

 25 main =

 26 let t = truck "red"

 27 in print (mpg t)

Fig. 6. A translation of the Python classes and methods to Haskell

new copy of the object with updated data member values. See Figures 7 and 8 for an

example of a Python method that mutates its data members and the respective Haskell

translation.

In the above example the Python decrement method only returns the updated

integer value. The Haskell version returns a tuple containing the updated integer value

along with a value that represents the modified counter object. While at first it could

seem counterproductive to modify the type signature of a method when the goal is to

detect type errors, in practice it was simple to adapt the calling code to accommodate the

additional return value. The change to the method type signature did not seem to hinder

the detection of type errors.

18

 1 #!/usr/bin/python

 2

 3 # A simple class in Python

 4 class counter():

 5 # The __init__ method

 6 def __init__(self, count):

 7 self.count = count

 8

 9 # The decrement method

 10 def decrement(self):

 11 self.count -= 1

 12 return self.count

 13

 14 # The value method

 15 def value(self):

 16 return self.count

 17

 18 # Create a counter and decrement the value twice

 19 if __name__ == '__main__':

 20 c = counter(9)

 21 x = c.decrement()

 22 y = c.decrement()

 23 print counter.value(c)

Fig. 7. A python class with a method that mutates its data members

 1 #!/usr/bin/runghc

 2

 3 -- A simple class in Haskell

 4 data Counter = Counter Integer

 5

 6 -- Function for constructing a new counter

 7 -- This takes the place of the __init__ method

 8 counter count = Counter count

 9

 10 {- The decrement method returns

 11 a tuple containing the current count and a new

 12 data type value representing the mutated state -}

 13 decrement (Counter count) = (count-1, (Counter (count-1)))

 14

 15 -- The value method

 16 value (Counter count) = count

 17

 18 -- Create a counter and decrement the value twice

 19 main = do

 20 let c = counter 9

 21 (x,c') = decrement c

 22 (y,c'') = decrement c'

 23 in print(value c'')

Fig. 8. A translation of the Python class in Haskell

19

 1 #!/usr/bin/python

 2

 3 # Generate RGBA color

 4 def makeRgb(r,g,b,a=1.0):

 5 return (r,g,b,a)

Fig. 9. A python function with a default argument

 1 #!/usr/bin/runghc

 2

 3 -- Generate RGBA color

 4 {- This variant of the function only takes

 5 three arguments the 4th argument is

 6 defaulted to 1.0 -}

 7 makeRgb r g b = makeRgb' r g b 1.0

 8

 9 -- Generate RGB colors

 10 {- This variant of the function takes all

 11 four arguments -}

 12 makeRgb' r g b a = (r,g,b,a)

Fig. 10. A Haskell translation of a function with a default argument

It was also problematic to translate Python functions and methods that had

default arguments. Haskell does not support the notion of default arguments. This was

resolved by defining new Haskell functions for each variation of the required arguments.

Each function variation was given a slightly different name from the original, and the

appropriate function was called from other parts of the code. See Figures 9 and 10 for an

example of a Python function with default arguments and the respective Haskell

translation.

The final challenge in translating the Python code to Haskell was the use of

Python’s rich set of built in libraries. In some cases, Haskell provided a similar library

20

that could be used as a drop in replacement. When a similar Haskell library did not

already exist, a replacement had to be implemented by defining Haskell functions and

data structures that duplicated the Python interfaces. Many of these functions and data

structures were able to be used in the translation of more than one programming project.

Many of these translation strategies ignore many of the more powerful and

idiomatic mechanisms (such as monads and type classes) of Haskell which would likely

have resulted in a simpler translation that was less syntactically similar to the original

Python code. By using these strategies, the resulting translation was syntactically similar

to the Python code and, therefore, easier to verify that a correct translation was made.

While each project was being translated, the Haskell code was continuously

checked for type errors using the Haskell type checker. When the type checker reported a

type error, the translation process was stopped, and the nature of the error was examined.

The purpose of the examination was to determine whether the type error was benign or

whether the type error could be manifest at runtime. This determination was made by

analyzing the original Python software and by attempting to write a Python unit test that

would trigger a runtime error. Once the nature of the error had been determined, the

Haskell version of the program was minimally modified to remove the type error and the

translation process continued.

When the translation of a software project was completed, each individual unit

test was manually examined to see if it could be eliminated from the statically typed

version without sacrificing software verification.

21

CHAPTER IV

RESULTS

In order to study potential error detection benefits of static type checking, four

software projects were translated from Python to Haskell. During the translation process

it became clear that a full understanding of the effect of applying static type checking to

dynamically typed software would require a detailed description of each defect along

with the scenarios that would cause each defect to be manifest at run time. The results

and description of each project translation are detailed below.

The Python NMEA Tookit

The first project that was studied was the Python NMEA Toolkit [22]. The

Python NMEA Toolkit is a library for communicating with GPS devices using the line

oriented NMEA protocol. During the translation of this toolkit, several type errors were

discovered. The first type error that was discovered by the translation process was in the

parse_data method of the Gps class. See Figure 11 for relevant code from the

parse_data method [22].

The parse_data method reads in all available NMEA sentences from an

input device and then creates a Sentence object for each NMEA sentence. If a NMEA

sentence is malformed, a ParseError exception is raised. The exception is caught by

an exception handler within the parse_data method that tries to call a method named

22

 # Project: Python NMEA Toolkit

 # Revision: 23:c3b4b4c61e3d

 # File: gps.py

 # Class: Gps

 # Method: parse_data

 83 def parse_data(self):

 ...

 93 lines = self.port.read_buffered()

 94 for line in lines:

 95 try:

 96 sentence = Sentence(line)

 97 except ParseError, ex:

 98 self.error_message(str(ex))

 99 else:

 ...

Fig. 11. The parse_data method from the Python NMEA Toolkit

error_message. The error_message method is not defined, so a Python

AttributeError is raised. Because the AttributeError is raised, all remaining

available NMEA sentences are discarded. If the type error was corrected by defining the

error_message method, only the malformed NMEA sentence would be discarded,

and the rest of the sentences could be processed. One could argue that the original

developer expected future developers who use this library to subclass the Gps class and

provide a custom error_message method. This is an unlikely scenario, however,

because the requirement to add a custom error_message method is not documented

in the code. Furthermore, early revisions of the Gps class did include an implementation

of the error_message method. The code was later re-factored, and the

error_message method and references to it were removed. The most likely

explanation is that this error was introduced during the refactoring process. While the

Python NMEA Toolkit [22] did provide unit tests, none of the tests detected this defect.

Had the unit tests included a test for malformed NMEA sentences, this type error would

23

 # Project: Python NMEA Toolkit

 # Revision: 23:c3b4b4c61e3d

 # File: gps.py

 # Class: Gps

 # Method: _parse_GSV

 175 def _parse_GSV(self, sentence):

 176 """ Parse "GPS Satellites in View" sentence """

 177 totalMsgs = sentence.get_int(0)

 178 msgNumber = sentence.get_int(1)

 179 totalSats = sentence.get_int(2)

 180 if msgNumber < totalMsgs:

 181 satRange = 4

 182 else:

 183 satRange = totalSats - ((msgNumber - 1) * 4)

 ...

Fig. 12. The _parse_GSV method from the Python NMEA Toolkit

have almost certainly been discovered. The Haskell type checker was able to discover

this error at compile time.

The second type error was found in the _parse_GSV method of the Gps

class. See Figure 12 for relevant code from the _parse_GSV method [22].

The method takes in a Sentence object and uses the Sentence object’s

get_int method to retrieve the first three NMEA sentence fields. The get_int

method returns the fields as integers unless the field is empty in which case the method

may return the Python None object. See Figure 13 for the get_int method [22].

The _parse_GSV method uses the values returned by get_int in

mathematical expressions. Because basic mathematical operators are not defined for the

Python None object, empty fields may result in the raising of the TypeError

exception. Because only empty fields in a NMEA sentence will cause the type error to be

manifest at run time, full unit test code coverage of the _parse_GSV method may not

24

 # Project: Python NMEA Toolkit

 # Revision: 23:c3b4b4c61e3d

 # File: parse.py

 # Class: Sentence

 # Method: get_int

 104 def get_int(self, index, default=None):

 105 """ Get an int item """

 106 value = self._words[index]

 107 if len(value) == 0: return default

 108 try:

 109 return int(value)

 110 except ValueError:

 111 raise ParseError("Word is not an int")

Fig. 13. The get_int method from the Python NMEA Toolkit

 # Project: Python NMEA Toolkit

 # Revision: 23:c3b4b4c61e3d

 # File: parse.py

 # Class: Sentence

 # Method: get_velocity

 122 def get_velocity(self, index, default=None):

 123 """ Get a velocity item """

 124 return velocity(self.get_float(index, default))

Fig. 14. The get_velocity method from the Python NMEA Toolkit

have detected this defect. The Haskell type checker detected the type error at compile

time.

The third type error discovered by the translation process is in the Sentence

class’ get_velocity method. See Figure 14 for the get_velocity method [22].

The get_velocity method retrieves a NMEA sentence field using the

get_float method. See Figure 15 for the get_float method [22].

The get_velocity method uses the results of the get_float call to

construct a velocity object. See Figure 16 for relevant code from the velocity

class [22].

25

 # Project: Python NMEA Toolkit

 # Revision: 23:c3b4b4c61e3d

 # File: parse.py

 # Class: Sentence

 # Method: get_float

 113 def get_float(self, index, default=None):

 114 """ Get an float item """

 115 value = self._words[index]

 116 if len(value) == 0: return default

 117 try:

 118 return float(value)

 119 except ValueError:

 120 raise ParseError("Word is not a float")

Fig. 15. The get_float method from the Python NMEA Toolkit

Project: Python NMEA Toolkit

Revision: 23:c3b4b4c61e3d

File: _types.py

Class: velocity

164 class velocity(float):

165 """ Speed value (default is knots to match nmea spec) """

166

...

Fig. 16. The velocity class declaration from the Python NMEA Toolkit

The velocity class inherits from float and must be constructed with either a

number or a string representation of a number. The get_float method like the

get_int method can return a Python None object if the sentence field is empty. This

results in a type error in the get_velocity method when it attempts to construct a

velocity object with the Python None value. Like the previous type error full code

coverage of the get_velocity method would not guarantee that this type error would

be discovered. The Haskell type checker detected the type error at compile time.

26

Project: Python NMEA Toolkit

Revision: 23:c3b4b4c61e3d

File: tcpport.py

Class: TcpPort

Method: close

44 def close(self):

45 """ Close the nmea port """

46 if self.sock:

47 self.sock.close()

48 self.sock = None

Fig. 17. The close method of the TcpPort class from the Python NMEA Toolkit

The final type errors in the Python NMEA Toolkit [22] are triggered when

calling the fileno, read or write methods on a closed TcpPort object. The

close method of the TcpPort class closes the underlying socket device and sets the

self.sock member variable to None. See Figure 17 for the close method [22].

The fileno, read and write methods all may raise the

AttributeError exception because all of these methods assume that self.sock is

a valid socket and has not been assigned the None value. It is interesting to note that the

close method does check for a None value, and so it is safe to call the close method

on a closed TcpPort object. This type error is also interesting in that it will only be

manifest if a developer chooses to call these methods after the connection has been

closed. In other words, only by misusing the API will the error be manifest. While it is

possible that raising the AttributeError is the behavior intended by the original

developer, it can be argued that the developer should have provided a more meaningful

error message. Even though it is impossible to know whether the current error handling

mechanism is intentional, it is interesting to note that the Haskell type system would

force the developer to consider the case of self.sock having a None value and to

27

 # Project: Python NMEA Toolkit

 # Revision: 23:c3b4b4c61e3d

 # File: _types.py

 # Class: satellite

 # Method: update

 144 def update(self, value):

 145 if isinstance(value, tuple):

 146 (prn, elevation, azimuth, snr) = value

 147 self.prn = prn

 148 self.elevation = elevation

 149 self.azimuth = azimuth

 150 self.snr = snr

 151 elif isinstance(value, satellite):

 152 self.prn = value.prn

 153 self.elevation = value.elevation

 154 self.azimuth = value.azimuth

 155 self.snr = value.snr

 156 else:

 157 raise ValueError

Fig. 18. The update method of the Sentence class from the Python NMEA Toolkit

explicitly handle this scenario. This restriction by the Haskell type system would have

likely resulted in a more descriptive error message. The code for the SerialPort class

contains the same defects as the TcpSocket class.

Unless the unit tests called one of these methods on a closed TcpSocket

object, it is likely that full code coverage unit testing would not have discovered this

defect. The Haskell type system was able to discover this defect. There is a run time error

in the program that can be eliminated when static type checking is applied. The update

method of the satellite class was written to explicitly throw a ValueError if it is

passed an argument that is not either a satellite object or a tuple. See Figure 18 for

the update method of the Sentence class [22].

28

The Haskell type checker ensures that this method is called with values of the

appropriate type and so not only is the ValueError eliminated, the code can be

simplified to remove the explicate type checks.

After the Python NMEA Toolkit [22] was translated, the unit tests were

examined. It was determined that two of the unit tests could safely be removed because

they only tested for type safety. These two unit tests account for 8.7% of the unit tests.

The Python NMEA Toolkit [22] did not use programming constructs which

would be rejected by the Haskell type system, but would not result in a runtime error.

It is clear that for the NMEA Toolkit, the unit tests did not negate the defect

detecting benefits of static type checking. There were three type errors that were

discovered that could be triggered due to malformed NMEA sentences and six type errors

that could be triggered by misusing the API. Of these type errors, only one would be

guaranteed to be discovered if the unit tests had full code coverage. There was

additionally one run time error that could be eliminated and two unit tests which were not

needed once static typing was applied. The toolkit did not utilize any dynamic code

constructs that resulted in either benign type errors or code that was cumbersome to

translate into a statically typed programming language.

MIDIUtil

The second project that was examined is the MIDIUtil [23] library. The

MIDIUtil library is a Python library for writing MIDI files. A couple of type errors were

discovered during the translation process. The first discovered type error was found in the

__eq__ method of the GenericEvent class. The __eq__ method performs a

29

 # Project: MIDIUtil

 # Revision: r10

 # File: MidiFile.py

 # Class: GenericEvent

 # Method: __eq__

 56 def __eq__(self, other):

 ...

 90 if self.type == 'controllerEvent':

 91 if self.parameter1 != other.parameter1 or \

 92 self.parameter2 != other.parameter2 or \

 93 self.channel != other.channel or \

 94 self.eventType != other.eventType:

 95 return False

Fig. 19. The __eq__ method of the GenericEvent class from the MIDIUtil library

comparison on GenericEvent class and all known subtypes. It contains specialized

code for the ControllerEvent subclass that compares a field named parameter2.

This field does not exist in the ControllerEvent class, and so an

AttributeError is raised. See Figure 19 for relevant code from the __eq__ method

[23].

While the full history of the MIDIUtil library [23] is not available, it appears

that the parameter2 member previously existed and was removed in later revisions.

This library did provide unit tests, but none of the tests detected this defect. If the unit

tests had compared two ConrollerEvent objects for equality, this defect would have

been detected. The Haskell type checker was able to detect this error.

The second type error in this library was found in the

deInterleaveNotes method of the MIDITrack class. See Figure 20 for relevant

code from the deInterleaveNotes method [23].

30

 # Project: MIDIUtil

 # Revision: r10

 # File: MidiFile.py

 # Class: MIDITrack

 # Method: deInterleaveNotes

 549 def deInterleaveNotes(self):

 ...

 558 tempEventList = []

 559 stack = {}

 560

 561 for event in self.MIDIEventList:

 562

 563 if event.type == 'NoteOn':

 564 if stack.has_key(str(event.pitch)+str(event.channel)):

 565 stack[str(event.pitch)+str(event.channel)].append(event.time)

 566 else:

 567 stack[str(event.pitch)+str(event.channel)] = [event.time]

 568 tempEventList.append(event)

 569 elif event.type == 'NoteOff':

 570 if len(stack[str(event.pitch)+str(event.channel)]) > 1:

 571 event.time = stack[str(event.pitch)+str(event.channel)].pop()

 572 tempEventList.append(event)

 573 else:

 574 stack[str(event.pitch)+str(event.channel)].pop()

 575 tempEventList.append(event)

 576 else:

 577 tempEventList.append(event)

 ...

Fig. 20. The deInterleaveNotes method of the MIDITrack class from the

MIDIUtil library

The deInterleaveNotes method processes all the events in the

self.MIDIEventList list. When a NoteOn event is encountered, information about

the event is recorded in the stack dictionary object. When the corresponding NoteOff

event is encountered, the information is retrieved from the stack dictionary. This

method assumes that the NoteOn event comes before the NoteOff event in the

self.MIDIEventList list. If a NoteOff event came before the corresponding

NoteOn event then the len function would be called on a None value and a

TypeError would be raised. The processEventList method places the NoteOn

and NoteOff objects on the self.MIDIEventList list and then attempts to ensure

31

 # Project: MIDIUtil

 # Revision: r10

 # File: MidiFile.py

 # Class: MIDITrack

 # Method: processEventList

 293 def processEventList(self):

 ...

 303 for thing in self.eventList:

 304 if thing.type == 'note':

 305 event = MIDIEvent()

 306 event.type = "NoteOn"

 307 event.time = thing.time * TICKSPERBEAT

 308 event.pitch = thing.pitch

 309 event.volume = thing.volume

 310 event.channel = thing.channel

 311 event.ord = 3

 312 self.MIDIEventList.append(event)

 313

 314 event = MIDIEvent()

 315 event.type = "NoteOff"

 316 event.time = (thing.time + thing.duration) * TICKSPERBEAT

 317 event.pitch = thing.pitch

 318 event.volume = thing.volume

 319 event.channel = thing.channel

 320 event.ord = 2

 321 self.MIDIEventList.append(event)

 ...

 379 else:

 380 print "Error in MIDITrack: Unknown event type"

 381 sys.exit(2)

 ...

 383 # Assumptions in the code expect the list to be time-sorted.

 384 # self.MIDIEventList.sort(lambda x, y: x.time - y.time)

 385

 386 self.MIDIEventList.sort(lambda x, y:\

 int(1000 * (x.time - y.time)))

 387

 388 if self.deinterleave:

 389 self.deInterleaveNotes()

Fig. 21. The processEventList method of the MIDITrack class from the

MIDIUtil library

that NoteOn events come before NoteOff events by sorting all events by their time

field in descending order. See Figure 21 for the relevant code from the

processEventList method [23].

The time field of the NoteOff event is guaranteed to be greater than the

time field of the NoteOn object as long as the duration field is positive. Because

32

the code does not prevent a user of the API from passing a negative duration field, it

is possible for the NoteOff event to come before the NoteOn event and therefore cause

the TypeError exception to be raised. It is likely that the original developer simply did

not consider the effect of the user passing a negative duration value as a negative

duration is nonsensical. The Haskell type system caught this type error and forces the

developer to explicitly handle this error condition. While this library did have unit tests,

none of them caught this error. Even if this library had full unit test code coverage, this

defect would not have been caught unless one of the unit tests explicitly tested a negative

duration value.

A runtime error is eliminated when static type checking is applied is in the

processEventList method. This method selects behavior based on the string value

of the GenericEvent.type data member. See Figure 21 for the relevant code from

the processEventList method. If the self.eventList contains an object of

type GenericEvent, but is not handled in this method, then the

processEventList will print an error message and exit. Haskell’s static type checker

ensures at compile time that all GenericEvent variants are handled by the

processEventList method.

After the MIDIUtil [23] library was translated, the unit tests were examined. It

was determined that none of the unit tests could be safely removed when static type

checking was applied.

The MIDIUtil [23] library uses the struct.pack and struct.unpack

methods. These methods serialize Python values to binary data and binary data to Python

33

values respectively. The methods determine how to serialize the data based on a format

string. Because the format string directs the serialization process, the type of the

arguments to struct.pack and the type of the return value from from

struct.unpack may vary. The variance in the types of arguments and return values

resulted in the Haskell translation of these methods being rejected by the Haskell type

checker even though the usage of these methods would not result in runtime errors. In

order to work around this limitation, several Haskell pack and unpack methods were

defined that each serialize a different data type. The pack and unpack methods are

composed in the same order that is specified in the Python format string. While this

approach does differ slightly from the Python mechanism, it is no less dynamic than the

Python version. Hard-coding serialization methods into Haskell is no less flexible than

hard-coding a format string in Python.

For the MIDIUtil [23], unit testing did not negate the benefits of static type

checking. While one of the type errors would have been discovered with full code

coverage of unit testing, the second type error would likely have gone un-detected.

Additionally, a runtime error was able to be eliminated.

GrapeFruit

The third project that was translated was the GrapeFruit [24] color

manipulation library. GrapeFruit is a library for translating between various color systems

(RGB, HSL, CMY, etc.). No type errors were discovered during the translation of this

library. There was, however, one runtime error that could be eliminated with the

application of Haskell’s static type checking. The Color class’ __init__ method

34

 # Project: GrapeFruit

 # Revision: r31

 # File: grapefruit_test.py

 # Class: ColorTest

 # Method: testEq

 208 def testEq(self):

 ...

 213 self.assertNotEqual(self.rgbCol, '(1.0, 0.5, 0.0, 1.0)')

Fig. 23. The testEq method of the ColorTest class from the GrapeFruit library

 # Project: GrapeFruit

 # Revision: r31

 # File: grapefruit.py

 # Class: Color

 # Method: __init__

 273 def __init__(self, values, mode='rgb', alpha=1.0, wref=_DEFAULT_WREF):

 ...

 287 if not(isinstance(values, tuple)):

 288 raise TypeError, 'values must be a tuple'

 ...

Fig. 22. The __init__ method of the Color class from GrapeFruit [24]

explicitly raises a TypeError exception if the values argument is not a tuple. See

Figure 22 for the relevant code from the __init__ method. The Haskell static type

checker can prevent this programming error at compile time.

When the GrapeFruit [24] library’s unit tests were examined, a single unit test

in the testEq method was discovered that could be removed after static typing was

applied. This test simply verified that a string representation of a color tuple was not

equivalent to the Color object in the self.rgbCol member. This test accounts for

only 0.008% of the total unit tests. See Figure 23 for the unit test code [24].

This library did not use programming constructs that would not cause a

runtime failure, but would be rejected by the Haskell type system.

35

Project: PyFontInfo

Revision: 6:290ce911500b

File: PFI_Tables.py

Class: NAME

Method: parseChildren

303 def parseChildren(self, fp):

304 for i in range(0, self.data.count):

...

Fig. 24. The parseChildren method of the NAME class from the PyFontInfo library

The GrapeFruit [24] library’s unit tests did appear to negate the benefits of

static type checking as no type errors were found. There was, however, a single runtime

error that could be translated to a compile time error and a single unit test could be

eliminated.

PyFontInfo

The final project that was translated was the PyFontInfo [25] library. This

library is used to extract header information from font files.

The first type errors that were discovered when translating this library to

Haskell are found in the parseChildren methods of the TABLE_RECORD and NAME

classes. See Figures 24 and 25 for the TABLE_RECORD and NAME class’

parseChildren methods [25].

The parseChildren methods reference data members of the object

assigned to self.data. The self.data member is created in the TTF_HEADER

parse method. See Figures 26 for the TTF_HEADER parse method [25].

While the parse method does call parseChildren after the self.data

member has been created, if the parseChildren method were to be called directly

36

 # Project: PyFontInfo

 # Revision: 6:290ce911500b

 # File: PFI_Tables.py

 # Class: TABLE_RECORD

 # Method: parseChildren

 91 def parseChildren(self, fp):

 92 for i in range(0, self.data.numTables):

 ...

Fig. 25. The parseChildren method of the TABLE_RECORD class from the

PyFontInfo library

 # Project: PyFontInfo

 # Revision: 6:290ce911500b

 # File: PFI_Tables.py

 # Class: TTF_HEADER

 # Method: parse

 25 def parse(self, fp):

 ...

 35 self.data = self.tpl._make(x)

 36 self.parseChildren(fp)

 ...

Fig. 26. The parse method of the TTF_HEADER class from the PyFontInfo library

without calling parse first, Python would raise an AttributeError when

self.data was referenced. It is likely that the original developer intended for the

parseChildren methods to only be called from the parse method, but neglected to

enforce the restriction. The Haskell type system requires that the self.data member

always exist and that the parseChildren methods handle the case where

self.data attribute has not been initialized. The provided unit tests did not catch these

errors. Even if full unit test code coverage had been provided, it would be possible for

these type errors to go undetected.

37

 # Project: PyFontInfo

 # Revision: 6:290ce911500b

 # File: __init__.py

 # Class: PyFontInfo

 # Method: getPANOSE

 68 def getPANOSE(self):

 ...

 78 return self.os2.PANOSE

Fig. 27. The getPANOSE method of the PyFontInfo class from the PyFontInfo

library

Project: PyFontInfo

Revision: 6:290ce911500b

File: __init__.py

Class: PyFontInfo

Method: getOS2

80 def getOS2(self):

...

86 return self.os2.data._asdict()

Fig. 28. The getOS2 method of the PyFontInfo class from the PyFontInfo library

The next set of type errors are found in the getPANOSE, getOS2,

getHead, getNames methods of the PyFontInfo class. See Figures 27, 28, 29 and

30 for the getPANOSE, getOS2, getHead, getNames methods of the

PyFontInfo class [25].

The getPANOSE and getOS2 methods each reference the self.os2

member which is initialized in the PyFontInfo __init__ method if an “OS/2”

record exists in the font file. See Figure 31 for the __init__ methods of the

PyFontInfo class [25].

38

 # Project: PyFontInfo

 # Revision: 6:290ce911500b

 # File: __init__.py

 # Class: PyFontInfo

 # Method: getHead

 88 def getHead(self):

 ...

 94 return self.head.data._asdict()

Fig. 29. The getHead method of the PyFontInfo class from the PyFontInfo library

Project: PyFontInfo

Revision: 6:290ce911500b

File: __init__.py

Class: PyFontInfo

Method: getNames

96 def getNames(self):

...

103 ret = self.name.UNICODE

...

Fig. 30. The getNames method of the PyFontInfo class from the PyFontInfo library

If an “OS/2” record does not exist and either the getPANOSE or getOS2

methods are called, an AttributeError will be raised. The getHead and

getNames methods reference the self.head and self.name members

respectively. These members are initialized to None, but may be set to a HEAD or NAME

object in the PyFontInfo __init__ method if a “head” or “name” record exists. If

the respective records do not exist, and the getHead or getNames methods are called,

an AttributeError will be raised. Even if full unit test code coverage had been

provided, it would be possible for these defects to go undetected.

There is a runtime error that can be eliminated when static type checking is

applied. The __init__ method of the PyFontInfo class takes an argument that must

be a string or a file-like object. If the argument is not one of these types, a

39

 # Project: PyFontInfo

 # Revision: 6:290ce911500b

 # File: __init__.py

 # Class: PyFontInfo

 # Method: __init__

 34 def __init__(self, f):

 ...

 36 self.head = None

 37 self.name = None

 ...

 39 try:

 40 if type(f) == str:

 41 fp = open(f, 'rb')

 42 elif type(f) == file:

 43 fp = f

 44 else:

 45 raise PFI_Exceptions.BadFileType(f)

 46 except IOError:

 47 raise

 ...

 51 self.DefinedRecords = [i for i in table.children_map]

 52 if 'head' in self.DefinedRecords:

 ...

 54 self.head = PFI_Tables.HEAD()

 ...

 57 if 'name' in self.DefinedRecords:

 ...

 59 self.name = PFI_Tables.NAME()

 ...

 62 if 'OS/2' in self.DefinedRecords:

 ...

 64 self.os2 = PFI_Tables.OS_2()

 ...

Fig. 31. The __init__ method of the PyFontInfo class from the PyFontInfo library

PFI_Exceptions.BadFileType exception is raised. While this check happens at

runtime in the Python code, the Haskell type checker can perform this check at compile

time.

An additional error that was detected during the translation of the Python code

to Haskell is found in the HMTX class. The HMTX class has a fmt data member that is

used as a format string for a Python struct.unpack call. See Figure 32 for the HMTX

class [25].

40

 # Project: PyFontInfo

 # Revision: 6:290ce911500b

 # File: PFI_Tables.py

 # Class: HMTX

 191 class HMTX(TTF_HEADER):

 ...

 198 fmt = '>?[]h[]'

 ...

 202

Fig. 32. The HTMX class from the PyFontInfo library

The format string specified in the HMTX class is invalid, which result in a

struct.error runtime error in the Python code. Due to the decision to use a sequence

of unpacking functions in Haskell instead of a Python format string, this defect is

changed from a runtime error to a compile time error in the Haskell translation. While

this error in Python is not a type error, the restrictions of the Haskell static type checker

required an implementation that transforms the runtime error into a type error. As was

pointed out before, hard-coding a series of Haskell functions to unpack the binary data is

no less inflexible than hard-coding a Python format string.

After examining the unit tests, it was determined that a single unit test could

be eliminated. See Figure 33 for the eliminated unit test [25].

The test attempted to construct a PyFontInfo object with an integer

argument. PyFontInfo then calls open using the integer as the filename. This unit test

is designed to make sure the PyFontInfo raises a Python TypeError exception when

constructed with an integer argument. In the Haskell translation this is a type error.

The unit tests provided by the PyFontInfo [25] did not negate the benefits of

static type checking. There were six type errors that were discovered by the Haskell type

41

 # Project: PyFontInfo

 # Revision: 6:290ce911500b

 # File: test.py

 23 test_files = []

 ...

 31 test_files.append(14)

 32

 33 for f in test_files:

 ...

 36 try:

 37 info = PyFontInfo(f)

 ...

Fig. 33. The eliminated PyFontInfo library unit test

checker and two runtime errors that could be removed. There was a single unit test that

only tested type safety that could be eliminated.

Just like the MIDIUtil [23] library, the PyFontInfo [25] library uses the

struct.pack and struct.unpack methods, which require some modification to

work around the limitations of static type checking. In this library the work-around

resulted in transforming the Python runtime error to a type error. Just like the MIDIUtil

[23] library, the Haskell version is no less dynamic than the Python version.

42

CHAPTER V

CONCLUSION

The translation of these four software projects from Python to Haskell proved

to be an effective way of measuring the effects of applying static type checking to unit

tested software. In the studied software projects, there were a total of four unit tests that

could be removed from the Haskell translation because their sole function was to test for

type safety. Because only a small subset of the total unit tests could be eliminated, it

appears that the developers of these software projects did not spend a lot of time

duplicating static type checking in the unit tests.

None of the studied software projects utilized Python’s dynamic features in a

way that made it difficult to translate the software to a statically typed programming

language. Two of the software projects did use Python’s struct.pack and

struct.unpack which were initially rejected by Haskell’s static type checker.

However, with some minor modifications to the translation, it was possible to create type

safe alternatives to these methods.

The consequence of these first two observations is that all of the software

projects could have easily been implemented in either a dynamically or statically typed

programming languages with only minor differences.

The final question this study attempted to address is whether unit testing in

practice is a good substitution for static type checking. There were a total of 17 type

43

errors that were discovered when translating the four software projects. Only two of the

17 type errors were guaranteed to be discovered with full unit test code coverage. Based

on these results, the conclusion can be reached that while unit testing can detect some

type errors, in practice it is an inadequate replacement for static type checking.

The GrapeFruit [24] library stands out from the other studied projects in that it

did not have any type errors. There are two notable factors that could contribute to the

type safety of the GrapeFruit [24] library. First, the library’s unit test were more

extensive than the other projects. As noted above, unit testing is not a replacement for

static type checking, but full code coverage unit tests will detect some type errors. There

is a second and perhaps more important difference between the GrapeFruit [24] library

and the other software projects. The GrapeFruit [24] library was written such that each of

the library’s variables will only be assigned values of a single type. Likewise, each of the

library’s methods will only return values of a single type. In statically typed

programming languages, the restriction of variables and return values to a single type is

enforced by the type checker. Fifteen of the 17 type errors that were found in the other

software projects were caused by variables that would hold or methods that would return

values of differing types. By restricting the values held in variables and the values

returned by methods to a single type, the developer of the GrapeFruit [24] library

forfeited the benefits of dynamic typing in exchange for a the possibility of fewer code

defects.

44

CHAPTER VI

FUTURE RESEARCH

There are several opportunities for future research related to this study.

Because the manual translation was time consuming and labor intensive, this study was

limited to studying four software projects with less than 2000 lines of source code.

Additional insights may be gained by studying a larger number of software projects

including projects that contain more than 2000 lines of code. The efficiency of translating

software from Python to Haskell may be improved by investing time in researching ways

to fully or partially automate the translation process.

During the translation process, it was discovered that it was beneficial to have

both the Python code and the Haskell translation open side-by-side to ensure that a

correct translation was being made. It was also beneficial to receive constant feedback on

whether the Haskell translation was syntactically correct. This was accomplished by

writing simple shell scripts that would constantly compile the Haskell translation and

provide auditory feedback when the Haskell translation failed to compile. Future

researchers may want to create similar tools to aid the translation process.

Another interesting opportunity for future study would be to translate

dynamically typed software projects into several different statically typed programming

languages. Due to the variance of static type systems between different programming

45

languages, some type systems may be better suited than others at discovering defects in

unit tested dynamically typed programming languages.

No effort was put into understanding how static type checking and unit testing

affects the speed of software development, or if either defect detecting system aided the

developer in understanding the source code or designing the software. All of these issues

may contribute to the overall cost and benefits of both unit testing and static type

checking.

It is hoped that this research project not only provides valuable insight into the

practical limitations of unit testing as a replacement for static type checking, but also

encourages further research into this topic.

REFERENCES

47

REFERENCES

[1] H. Zhu, P. A. Hall, and J. H. May, “Software Unit Test Coverage and Adequacy,”

ACM Computing Surveys, vol. 29, no. 4, pp. 366–427, 1997.

[2] L. Cardelli, “Type Systems,” The Computer Science and Engineering Handbook,

A. B. Tucker, ed. CRC Press, pp. 2208–2236, 1997.

[3] J. Spolsky and B. Eckel, “Strong Typing vs. Strong Testing,” in The Best Software

Writing I. Apress, pp. 67–77, 2005.

[4] J. Gannon, “An Experimental Evaluation of Data Type Conventions,”

Communications of the ACM, vol. 20, no. 8, pp. 584–595, 1977.

[5] S. Hanenberg, “Doubts About the Positive Impact of Static Type Systems on

Programming Tasks in Single Developer Projects - an Empirical Study,” ECOOP

2010 Object-Oriented Programming,. Lecture Notes in Computer Science, T.

DHondt, ed. Springer Berlin / Heidelberg, vol. 6183, pp. 300–303, 2010.

[6] L. Prechelt and W. F. Tichy, “A Controlled Experiment to Assess the Benefits of

Procedure Argument Type Checking,” IEEE Transactions on Software

Engineering, vol. 24, pp. 302–312, 1998.

[7] B. Cannon, “Localized Type Inference of Atomic Types in Python,” Master’s

thesis, California Polytechnic State University, San Luis Obispo, 2005.

[8] L. Chen, B. Xu, T. Zhou, and X. Zhou, “A Constraint Based Bug Checking

Approach for Python,” COMPSAC ’09: Proceedings of the 2009 33rd Annual IEEE

International Computer Software and Applications Conference. Washington, DC,

USA: IEEE Computer Society, pp. 306–311, 2009.

48

[9] M. Furr, J. D. An, J. S. Foster, and M. Hicks, “Static Type Inference for Ruby,”

SAC ’09: Proceedings of the 2009 ACM symposium on Applied Computing. New

York, NY, USA: ACM, pp. 1859–1866, 2009.

[10] R. G. Hamlet, “Testing Programs with the Aid of a Compiler,” IEEE Transactions

on Software Engineering, vol. 3, no. 4, pp. 279–290, 1977.

[11] F. Henglein and J. Rehof, “Safe Polymorphic Type Inference for a Dynamically

Typed Language: Translating Scheme to ML,” Proceedings of the Conference on

Functional Programming Languages and Computer Architecture (FPCA). ACM

Press, pp. 192–203, 1995.

[12] D. Duggan and F. Bent, “Explaining Type Inference,” Science of Computer

Programming, vol. 27, no. 1, pp. 37–83, 1996.

[13] M. Ellims, J. Bridges, and D. C. Ince, “Unit Testing in Practice,” ISSRE ’04:

Proceedings of the 15th International Symposium on Software Reliability

Engineering. Washington, DC, USA: IEEE Computer Society, pp. 3–13, 2004.

[14] L. Madeyski, “Impact of Pair Programming on Thoroughness and Fault Detection

Effectiveness of Unit Test Suites,” Software Process Improvement and Practice,

vol. 13, no. 3, pp. 281–295, 2008.

[15] M. M. Muller and O. Hagner, “Experiment About Test-First Programming,” IEEE

Proceedings - Software, vol. 149, no. 5, pp. 131–136, 2002.

[16] A. J. Simons and C. D. Thomson, “Benchmarking Effectiveness for Object-

Oriented Unit Testing,” ICSTW ’08: Proceedings of the 2008 IEEE International

Conference on Software Testing Verification and Validation Workshop.

Washington, DC, USA: IEEE Computer Society, pp. 375–379, 2008.

49

[17] “Python Language Reference,” Retrieved September 11, 2010 from the World

Wide Web: http://docs.python.org/reference.

[18] S. Marlow, ed., Haskell 2010 Language Report. Cambridge University Press, 2010.

[19] “Bitbucket,” Retrieved September 1, 2010 from the World Wide Web:

https://bitbucket.org.

[20] “Project Hosting on Google Code,” September 1, 2001 from the World Wide Web:

http://code.google.com/hosting.

[21] A. Danial, “Count Lines of Code,” Sourceforge, 2011. Retrieved September 10

from the World Wide Web: http://cloc.sourceforge.net.

[22] T. Savage, “Python NMEA Toolkit”, Google Project Hosting, 2009. Retrieved

September 20, 2010 from the Internet via Mercurial: https://python-

gpsd.googlecode.com/hg/. rev. 23:c3b4b4c61e3d.

[23] M. Wirt, “MIDIUtil”, Google Project Hosting, 2010. Retrieved October 05, 2010

from the Internet via Subversion: http://midiutil.googlecode.com/svn/trunk. rev.

r10.

[24] X. Basty, “GrapeFruit”, Google Project Hosting, 2008. Retrieved October 16, 2010

from the Internet via Subversion: http://grapefruit.googlecode.com/svn/trunk. rev.

r31.

[25] S Zong Chen, “PyFontInfo”, Bitbucket, 2010. Retrieved November 2, 2010 from

the Internet via Mercurial http://bitbucket.org/sirpengi/pyfontinfo. rev.

6:290ce911500b.

