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SUMMARY 

Conventional LR parser generators create tables which are used to drive a standard parser 
procedure. Much faster parsers can be obtained by compiling the table entries into code that is 
directly executed. A possible drawback with a directly executable parser is its large size. In this 
paper, we introduce optimization techniques that increase the parsing speed even further while 
simultaneously reducing the size of the parser. 
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INTRODUCTION 

The syntax analysis phase of a compiler can represent a significant proportion of the 
entire compilation time. Waite and Carter' give figures showing that a recursive descent 
parser consumed 24 per cent of the entire compilation time in a Pascal compiler that 
they studied. Of course, this number is strongly dependent on the parsing technique 
and on the nature of the compiler. But it does serve as a warning that parsing should 
not be ignored when the goal is to achieve fast compilation rates. 

There are two families of parsing methods in widespread use. One family corresponds 
to a top-down approach to parsing, and the class of grammars that are accepted is 
LL(1). One method of implementing LL(1) parsers is by recursive descent, but a 
more efficient technique is to use a table-driven parser. In fact, Waite and Carter 
managed to reduce the proportion of time spent parsing in their Pascal compiler from 
24 to 7 per cent by substituting a table-driven LL( 1) parser coded in assembly language. 

The second family of methods is based on bottom-up, shift-reduce, parsing. The 
classes of grammars that are normally used are SLR( l ) ,  LALR( 1) or LR( 1) depending 
on the parser generator employed. We will use the term LR parsing to refer to this 
collection of methods. Until recently, LR parsers have all been implemented using the 
table-driven approach. The parser generator transforms the grammar into tables whose 
entries must be interpretively executed by a driver program. 

Because LALR( 1) grammars have more expressive power than LL( 1) grammars, 
the syntax rules for most programming languages are presented in LALR(1) form, 
whereas LL( 1) grammars are provided for only a few. Therefore, it can be argued that 
a general-purpose parser generator should accept either the LALR( 1) or LR( 1) gram- 
mar class, rather than be restricted to the LL(1) class. A discussion of the pros and 
cons of the LL and LR methods can be found in Reference 2, pp. 196-200. 
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There has been considerable research into reducing the storage requirements of 
parsers,3 but there has been comparatively little work directed towards increasing 
parsing speed. Table-driven LR parsers can be made to execute very much faster 
through careful coding of the driver program. Grosch'. ' has followed this approach 
and can parse C source code at a rate of approximately 400,000 lines per minute on a 
Motorola 68020 processor. This  is approximately twice as fast as a parser generated by 
ycicc,6 the standard parser generator supplied with Unix. 

An alternative approach, used by Pennello,' is to convert table-driven LR parsers 
into directly-executed code. Instead of having a drii.er program access a table entry 
and interpret its actions, each table entry can be 'compilcd' into low-level statements 
that perform the actions directly. By compiling LR tables into assembly language, 
Pennello increased the speed of \.arious parsers by a factor of 6.5, achieving a processing 
rate of 240,000 lines per minute on an Intel 80286 processor with a 8 MHz clock rate. 
.4 speed-up by a ractor of 10 for a COBOL parser on a proprietary architecture was 
also reported. niight be expected, the conversion into code came at the expense of 
an increase in memory requirements-a growth factor of 3.6 was reported. It is also 
possible to compile the entries of a LL(  1) parser into code, and Gray" has implemented 
such a scheme. Gray chose to compile the LL(1) parser into C code, and therefore 
his parser generator has the advantage of being portable. On the other hand, the C 
language is somewhat less flexible than assembly language and some loss of coding 
efficiency inevitably occurs (especiallJ- when switch statements are used in the C source 
code). 

We believe that a directl!, esecutable parser generated from LL( 1) tables will usually 
be faster than one generated from LR(  I )  tables. If  the L L (  1) parser is implemented 
by recursive-descent or by a table-dri\-en equivalent of recursive-descent with an explicit 
control stack, it  will perform much less stack manipulation than the LR(  1) equivalent. 
This  form of LL( 1) parser pushes and pops an item onto its stack no more than once 
for each application of a production rule. T h e  number of stacking operations is reduced 
even further if iteration is used instead of recursion when recognizing constructs defined 
by right-recursive production rules. .An LR parser, however, pushes and pops an item 
onto its state stack for every symbol that is read as well as for each application of a 
production rule. 

In  this paper, we introduce some optimization techniques that considerably reduce 
the number of stack operations performed by directly executable LR parsers, and we 
will describe a parser generator that implements these techniques. Our  parser generator 
is compatible with jwcc and generates a parser in either C source code form or in the 
assembly language of the SUN3 computer. Retargeting the parser generator to a 
different language is straightforward. T h e  stack optimizations have the benefit of 
reducing the. size of the parser while simultaneously increasing its speed. When com- 
bined with some other, simpler, optimizations, we can generate parsers that are only 
slightly larger than their table-driven counterparts, but execute up  to eight times faster. 

T h e  following sections of this paper give an example of an unoptimized directly 
executable parser, introduce some optimizations that reduce stack use, explain sonie 
additional simple optimizations and give performance results achieved by our 
implementation. No specific knowledge of LR parser generation techniques is assumed. 
T h e  interested reader can refer to texts on LR parsing'" or on compiler construction' 
for this information. 

T h e  results reported here represent a re-implementation of, and an extension to, 
some earlier work.". l 2  
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AN EXAMPLE 

Before examining optimization of directly executable parsers, it would be helpful to 
begin with a small example of the parse tables produced by a LR parser generator, 
and to look at how the tables might be translated into C code. 

A grammar and its LALR(1) parse tables 

multiplication operators: 
Here is a small grammar for arithmetic expressions containing infix addition and 

0. S + E  
1. E + E + E  
2. E + E * E  
3. E + ( E )  
4. E + id 

T h e  symbol id represents an identifier. With declarations to specify that the + and 
* operators are left-associative and that * has higher precedence than +, the grammar 
would be acceptable to the vacc parser generator. (Some grammar transformations 
would be necessary before the grammar would be acceptable to parser generators that 
do not support such declarations.) This  grammar describes arithmetic expressions such 
as 

a + b  
a + b * c  
(a + b) 6 (c)  

and so on. 
An LALR(1) parser 

encode the actions of 
sometimes called the T 
by terminal symbols of 

generator would convert the above grammar into tables that 
a LR parser for this grammar. T h e  main parser tables are 
table and the N table. T h e  columns of the T table are indexed 
the grammar, whereas columns of the N table are indexed by 

non-terminal symbols. Figures 1 and 2 show the tables for our example grammar. T h e  
terminal symbol EOF represents an end-of-input marker. We note that an SLR(  1) or 
LR(0) parser generator would generate similar tables but containing fewer blank entries. 
An LR(1) parser generator would normally create larger tables with more rows. 

r l  

* ( ) EOF 

acc 
s4 rO 

s3 

s3 
s3 
s3 

s4 sr3 
s4 r l  r l  7 

Figure 1 .  T table Figur-e 2 .  S table 
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However, all four parsing methods use the same kinds of table entries and process the 
table entries in exactly the same way. 

A parser that interprets the actions in these tables maintains a stack of state numbers. 
The  top state number on this stack represents the current state of the parser. The  
parser selects an action from the T table based on the current state and on the current 
input symbol. There are five different kinds of entry used in the T table. 

An entry like ‘s7’ indicates that a shift to state 7 should occur. The new state 
number, 7 ,  is pushed onto the state stack and a new input symbol is read. 
An entry like ‘r4’ indicates that a reduction using production number 4 should 
occur. There are three parts to a reduction. First, if there is any semantic action 
associated with rule number 4, it should be executed. Secondly, as many entries 
are popped off the state stack as there are symbols on the right-hand side of rule 
number 4. Thirdly, the symbol that appears on the left-hand side of the pro- 
duction rule is used to select an action from the N table (see below). 
An entry like ‘sr5’ represents a composite shift-reduce action. I t  is equivalent to 
the pair of actions: ‘sk;rS’ where k represents an arbitrary state number. T h e  
value of k is immaterial because the reduce action pops and discards the value 
immediately after it is pushed. The use of shift-reduce actions allows many 
states to be eliminated from the parser and hence makes the tables considerably 
smaller. 
A blank entry indicates that a syntax error has been detected. A table-driven 
parser would normally report the error and then attempt to resume the parsing 
process after executing a syntactic error recovery algorithm. 
Finally, the entry ‘acc’ (accept) indicates that the parser should halt and report 
a successful parse. 

There are three kinds of entry in the N table. Entries in the table are selected by 
the current state (the topmost state number on the stack) and by a non-terminal 
symbol. 

1. 

2. 

3. 

4. 

5 .  

1. 

2. 

3.  

An entry like ‘s3’ indicates that state number 3 is pushed onto the state stack. 
Parsing would then continue by reverting to use of the T table (where the next 
action is determined by the new state on top of the stack and by the current 
input symbol). 
An entry like ‘sr2’ again represents a composite shift-reduce action. T b  effect 
is the same as executing a entry like sk from the N table immediately followed 
by ‘1-2’ from the T table. This implies that another N table action is executed 
immediately after the ‘sr2’ action. 
A blank entry represents a ‘don’t care’ entry because it can never be accessed, 
regardless of whether the input token sequence is syntactically correct or not. 

Directly executable parser code 
A straightforward translation of the T and N tables into directly executable C code 

is easy to accomplish. If we make only a minimal attempt to generate good code, the 
code might look like that shown in Figure 3 .  

Each row of the T table is translated into a standard block of code with two entry 
points. The  row for state number n is converted into code with the entry labels Sn 
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SO: 
PO: 

S l :  
Pi : 

s2 : 
P2: 

s7 : 
P7 : 

/* Code for T Table Actions */ 
token = scan(); 
push( 0 1; 
i f  (token == id) goto SR4; 
i f  (token == I(’) goto S3; 
goto Error; 
token = scan(); 
push( 1 1; 
i f  (token == EOF) return; 
goto Error; 
token = scan(); 
push( 2 1; 
i f  (token == pt’) goto SS; 
if (token == ‘*I)  goto S4; 
goto RO; 

code for states 3-6 omitted 

token = scan(); 
push( 7 ); 
if (token == ’*I)  goto S4; 
goto R i ;  

SRO : 
RO : 
SR1: 
R i  : 
SR2: 
R2 : 
sR3 : 
R3: 
SR4: 
R 4  : 

IXT: 

/* Code for Rule Reductions */ 
push( -1 ); 
pop( 1 1; lhs = S; goto PXT; 
push( -1 1; 
pop( 3 1; lhs = E; goto IXT; 
push( -1 1; 
pop( 3 ); lhs E; goto IXT; 
token = s c a d ) ;  push( -1 >; 
pop( 3 1; lhs  = E; goto IXT; 
token scan(); push( -1 1; 
pop( 1 1; lhs  = E; goto IXT; 

/* Code for I Table Actions */ 
switch( t o p 0  ) { 
case 0: 

if  ( lhs  == E) goto Si; 
goto P2; 

case 3: 

case 4: 

case 5: 

goto P6; 

goto SR2; 

goto P7; 
1 

Error: 
... report ihe e m r  

Figwe 3. Directly executable parser 

and Pn. The former calls the scan function to read a new token whereas the latter does 
not. T h e  code continues with a statement to push the current state number onto the 
stack and then performs a sequence of tests on the current input symbol. A minor 
optimization, seen in states 2 and 7, is to eliminate some comparisons by making a 
rule reduction into a default action. The only consequence of this optimization is to 
delay detection of a syntax error in the input until after the rule reduction has been 
performed. 

Each row of the N table translates into a clause in a switch statement. The row for 
state number n is converted to code with a label of the form case n ,  followed by a 
sequence of tests. The subject of these tests is the symbol that appeared on the left- 
hand side of the previous rule reduction. An action like ‘s2’ is coded as a transfer to 
label P2, rather than to S2, because the parser should not read a new symbol. Since 
blank entries in the N table cannot be accessed, empty rows need not be converted 
into code. For the same reason, there need not be an explicit test for the last possibility 
in a sequence of tests on the left-hand-side symbol. 

Each rule in the grammar is translated into a standard block of code with two entry 
labels. The  label with the form Rn handles a reduce by rule n (corresponding to an 
entry of the form ‘rn’ in the T table). The  code for a reduce first pops k values off 
the state stack, where k is the length of the right-hand side of production rule number 
n. Then it sets the Ihs variable to the left-hand side symbol of rule n ,  and transfers 
control to the switch statement. If a semantic action is associated with the production 
rule, the code for this action should be included. 

The label with the form SRn handles a shift-reduction action by rule n (corresponding 
to an entry of the form ‘sm’ in either the T or N table). If the entry occurs in the T 
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table, a new symbol must be read. A fictitious state number is pushed onto the stack, 
and then the reduce action code can be executed. T h e  SRn label and the push operation 
may be omitted if there are no actions of the form srn in either of the T or N tables. 

No doubt the reader will have noticed that the code in Figure 3 can be considerably 
improved. One observation is that states 3, 4 and 5 in T table produce nearly identical 
code (differing only in the state number that is pushed onto the stack). A second point 
is that not all the labels defined in the code are referenced-implying that these labels 
and several lines of code may be deleted. The  use of C as a target language is also a 
source of some minor inefficiencies. For example, if  the target language permitted 
statement labels to be used as first-class objects (as in Fortran, PL/I or assembly 
language), we could implement the state stack by a stack of statement labels and thus 
replace the switch statement labelled N S T  by an indirect branch. Pennello’s directly 
executable parser’ used this approach. 

We will return to issues of code quality later. First, Lye will consider optimizations 
that reduce usage of the state stack. 

STACK ACCESS OPTIRIIZATIONS 

Many of the push and pop actions performed during a LR parse are redundant. 
\Ve present, below, the ‘minimal push’ optimization technique that eliminates these 
redundant actions. In addition, we present two additional optimizations that have the 
effect of increasing the applicability of minimal push Optimization. 

Minimal push optimization 
Suppose that the grammar contains a production rule 

A - t a b c d  

where a ,  b, c and d represent terminal symbols. Further, suppose that there are no 
alternative productions for A that begin with a .  If the LR parser begins recognizing 
an instance of A in a context where there are no possibilities other than A, the parser 
should contain a sequence of states like those shown in Figure 4. (If state 5 has been 

Reduce : 
A + a b c d  

etc. 

I.’igure 4 .  State stnrcture for A 4 a b c d 



EVEN FASTER LR PARSING 52 1 

eliminated by shift-reduce optimization, the argument given below requires only minor 
changes.) 

While recognizing A from state 1, the parser reads the symbols a, b, c, d and follows 
the sequence of state transitions 1+2+3+4-+5 in the Figure. The  numbers of each 
of these states are successively pushed onto the state stack. At state 5, the parser 
performs a reduction action using the rule A + a b c d. The  action causes state numbers 
2, 3, 4 and 5 to be popped off the stack and discarded without ever having been used! 
The  state number that is uncovered by the four pop operations (state 1) is used, 
however. It and the left-hand-side symbol, A, are needed to determine that a transition 
to state 6 is required after the rule reduction. 

We make the observation that only states with non-terminal transitions (like state 1 
in the Figure) need be pushed onto the stack. These state numbers are the only ones 
which might be consulted after a rule reduction. For the parser whose tables are given 
in Figures 2 and 3 ,  the states which need to be pushed are 0, 3 ,  4 and 5. These are 
the only states which have non-empty rows in the N table. 

The  obvious optimization to make to a directly executable parser, therefore, is to 
generate statements for pushing the state number only in states that have non-terminal 
transitions. In the code generated for a rule reduction, we also need to modify the 
number of items to be popped off the state stack. For example, the rule reduction 
code for A -+ a b c d in State 5 would have to be changed from popping four items to 
popping zero items. Determination of the correct number of items to pop at a reduction 
is not difficult. However, we will provide a moderately formal explanation. 

We use the notation S,+S, to indicate that the LR parser has a transition from state 
S, to state S, on symbol X. For a state S,, where a reduction L7i+Ai-lA-z. . . S,, is 
performed, we define the reduction path set as: 

1 

Given a particular reduction path S,S2. . S,,, the number of items to pop is equal to 
the number of states with non-terminal transitions among Sz,S3. . .S,,. (Note that S, 
is not included in the list.) 

Two problems arise. The  first problem is that two different states may perform a 
reduction by the same production, and the count of items to pop in one state may 
disagree with the number of items to pop in the other state. The  second problem is 
that a particular reduction in some state may have more than one reduction path, and 
some of these paths may require differing numbers of items to be popped. 

T h e  first problem, where there is a conflict between reduction actions in two different 
states, can be resolved by replicating the rule reduction code in the directly executable 
parser. Each replica can be modified to pop a different number of items off the stack. 
It is then an easy matter to transfer control to the appropriate version of the rule 
reduction code. 

The  second problem, where a reduction in a single state does not have an unambigu- 
ous number of items to pop, is illustrated in Figure 5. In the Figure, states 1 ,  2 and 
4 have non-terminal transitions and cause items to be pushed onto the stack. If state 
6 is entered by the path 1+3+5+6, the rule reduction should not pop any items off 
the stack. But if state 6 is entered by the path 2+4+5-+6, one item (state number 4) 
needs to be popped. We call this situation a ‘pop-count’ conflict. 
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Reduce : 
A - a b c  

There are at least two possible solutions to such a conflict. One possibility is to 
insert some extra stack pushes into the reduction paths which have fewer pushes. A 
solution along these lines must exist because, at worst, we can cause every state to 
push its state number on entry-reverting to the behaviour of the unoptimized LR 
parser. An alternative solution, and the one actually implemented in our parser gener- 
ator, is to duplicate the states involved in the conflict. For example, the configuration 
of Figure 5 would be transformed into the configuration shown in Figure 6. By this 
means, the states 6 and 6' are given distinct numbers of items to pop from the stack 
when a reduction by the rule A -+ a b c is to be performed. In other words, the second 
problem with pop counts is reduced to an instance of the first problem. 

In  practice, we have found pop count conflicts to be rare. Only a very few states 
need to be duplicated to eliminate the conflicts. Some figures appear towards the end 
of this paper in the section on experimental results. 

For a typical grammar, the proportion of stack pushes that are eliminated by the 
minimal push optimization alone is not very high. We observed that only about 30 per 
cent of pushes are eliminated, and this figure does not appear high enough to make 
the optimization worth while. As one referee of this paper observed, two or more 
adjacent terminal symbols in the right-hand side of a rule are necessary for the 
optimization to be applicable. Typically, terminal symbols are used to separate non- 
terminal symbols and they do not often appear in adjacent positions. However, the 
optimization becomes highly effective when used in conjunction with the 'direct goto' 
optimization, described next. 
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An alternative method of eliminating some redundant stacking operations from the 
parser would be to implement left-corner parsing.* With this technique, LR parsing 
is used for parsing the right-hand sides’ production rules until it becomes unambiguous 
as to which right-hand side is involved. At this point, LL(1) parsing is used to recognize 
the remainder of the rule. Since we can implement LL( 1) parsing with fewer stacking 
operations than for the LR methods, some savings should occur. 

Direct goto determination 
A table-driven LR parser uses the N table to determine how to continue after a rule 

reduction. The state stack is popped and the top state on the stack is used to select a 
row in the table. The  left-hand side of the rule determines the column, and thus the 
appropriate shift or shift-reduce action is selected. The equivalent actions in the directly 
executable parser (as seen in Figure 3) are to select some code to execute based on the 
top state on the stack. Then a series of tests on the left-hand side symbol is performed. 

If a rule reduction in some state always causes the parse to be continued in exactly 
the same way, all the work of selecting a clause in the switch statement and the tests 
on the left-hand side symbol can be suppressed. The rule reduction can be implemented 
by popping the stack, if required, and then making a direct transfer of control to the 
appropriate continuation code. 

We will now give a more formal explanation of minimal push optimization and of 
the direct goto optimization introduced in this section. In order to simplify the formal 
explanation, we will assume that the parser does not contain any combined shift-reduce 
actions. (It is straightforward, but not instructive, to remove this assumption.) 

First, we will introduce some more terminology. Let States be the set of parser 
states and Rules be the set of production rules which may be used in reduction actions. 
If a state S may perform a reduction using the rule R = X -+A-,A-2 . . . -Y,,, we define 
an ongin state for this reduction as being a state S, such that S1S2. . .S,,S is a reduction 
path for rule R in state S. We also define the destination state associated with S , ,  R 
and S as being the state, D ,  reached by the non-terminal transition on symbol S (the 
left-hand-side symbol of rule R )  from state S,. In other words, D represents one of 
the possible states in which parsing resumes after a reduction by rule R in state S .  

For the entire parser, we can define the set of Reductions as {(Q,D,R,S)} where Q is 
an origin state associated with each rule reduction R performed in each state S ,  and Q 
-+ D is a transition labelled by the left-hand-side symbol of R. 

We can optimize the reduction by rule R in state S if the set of possible goto 
destinations 

{d 1 (q,d,R,S) E Reductions, q E States, d E States} 

contains exactly one element. In this situation, the parser need not consult the state 
stack after the rule reduction and can simply transfer control to the unique destination 
state. We call this particular optimization direct goto optimization. 

Since direct goto optimizations eliminate some accesses to the state stack, the minimal 
push optimization can be extended. It is frequently the case that direct goto optimization 
eliminates the need for pushing many more states. 

The exact conditions under which a state should now be pushed are the following. 
State (2 must be pushed onto the stack in a parser to which both minimal push and 
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direct goto optimization are applied only if 

(1) S R , S , D :  (Q,D,R,S) E Reditctivizs, and 
(2) g R , S , D :  R E Rules, S E States, 

(0, I) ,R , S )  E Reduct iotr s , 
I{cf I ( q , c l , H , S )  E Reductions, y,d E States}( ) 1 

T h e  first of the t\vo conditions requires that state Q has at least one non-terminal 
transition. T h e  second condition requires that at least one use of the non-terminal 
transition after a rule reduction cannot be eliminated by direct goto Optimization. 

If we were to apply minimal push optimization and direct goto optimization to the 
parser shoum in Figure 3 ,  the folloLving changes Lvould be made. First, stack push 
operations would be suppressed in states 0, 2, 6 and 7. Secondly, reductions by rules 
0 and 4 would be implemented by direct control transfers. Thirdly, reductions by rules 
1,  2 and 3 would require only one item to be popped (instead of the three items 
required by a conventional LR parser). 

Right-recursive rule optimization 
Consider how lists of identifiers separated by commas may be described by grammati- 

cal productions. one possibility is to use i-i,g/ri-t~ci~isi~~e production rules, as follows. 

L -+ id LL 
LL -+ 
LL -+ , id LL 

An alternate possibility is by using left-i-ecursic~e production rules, as follows. 

L + id 
L +  L ,  id 

T h e  left-recursive formulation cannot be used with non-backtracking, LL( 1)-based 
parsing methods. T h e  parser is unable to determine which of the two rules to use 
when it begins to match the symbols on the right-hand side. T h e  right-recursive 
formulation, however, works very well with recursive-descent or table-driven LL( 1 )  
parsers. It is particularly effective if the tail-recursion implied by the third production 
rule is optimized into an iterative loop. 

A parser based on one of the LR methods can be used with either formulation. 
(This is one of the reasons why the LR methods are often preferred to the LL 
methods.) But the left-recursive formulation is much preferable to the right-recursive 
form. An LR parser, constructed by the standard method from the right-recursive 
grammar, will perform a shift action for every identifier and comma in the list that is 
being parsed. It will not perform any reductions until a shift action has been performed 
for the final identifier in the list. Thus ,  i f  the list contains ti identifiers, 2tz-1 states 
will be pushed on to the state stack without any intervening pop operations. T h e  
unfortunate implication is that the amount of storage allocated to the stack restricts 
the maximum length of a list that can be parsed by a normal shift-reduce parser using 
a right-recursive grammar. In contrast, if the left-recursive formulation is used, a list 
of indefinite length can be parsed with a stack that has space for just three items. 
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T h e  minimal push optimization, introduce above, reduces stack use for the right- 
recursive grammar somewhat. For example, a list containing n identifiers would require 
only n stack pushes, because pushes of the state where the comma separator is 
recognized are suppressed. However, it would definitely be advantageous to reduce 
stack use even further. 

As the following example will illustrate, the push operations occurring during recog- 
nition of a construct defined by a right-recursive rule may indeed be unnecessary. T o  
simplify the explanation, we use a slightly simpler grammar than the one given above. 
Consider a grammar that includes the following three rules. 

1. S - + . . . L  
2. L - + a , L  
3. L + b  

The  dots indicate that some symbols in the first rule are not shown. T h e  non-terminal 
L generates lists of a symbols terminated by a b symbol and separated by commas. If 
the grammar contains no other references to the non-terminal L, the LR parser will 
include the states shown in Figure 7. 

In this parser, the minimal push optimization technique will determine that only 
states 1 and 5 (both with non-terminal transitions on L) need to be pushed. However, 
state 5 is located in a two-state cycle that is traversed once for each occurrence of the 
symbol a. 

Analysis performed for direct goto optimization reveals that the set of reduce tuples 
for the parser contains the following three elements: 

(State,, State ,, L -+ b, State,) ,  
(State, ,  State,, L -+ a,L, State,), 
(State,, State,, L -+ a,L, State7) 

We note that the reduction by the rule L -+ b in state 6 is a candidate for direct 
reduction optimization. However, the critical observation to make is the following. If 
a reduction by the rule L -+ a, L in state 7 uncovers state number 5 on the stack, 
control is immediately passed back to state 7 again. That  is, the destination state and 
reduction state in the reduction quadruple are the same. If there are no semantic 

<>,b State 1 a?;;: State2 

Reduce 
L + b  

Reduce : 
L - + a , L  

etc. 

I.'igut-e 7. Parser- with right-7-ec2rrsie.e rules 
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actions associated with a reduction by this rule, such a reduction has no more effect 
than popping one element off the stack. 

When parsing the list a,a,a,a,b, the parser will push state 1 followed by four 
occurrences of state 5 onto the stack. Then the top four items will be popped off the 
stack (as four reductions by rule number 2 occur) and control will be transferred to 
state 3 .  If state 5 is simply popped off the stack without having any other effect on 
the parse and is not accessed in any state other than state 7 ,  it need not have been 
pushed in the first place. 

The minimal push optimization technique can be extended to eliminate the push of 
state 5 in the example. We call this extension nght-recursive rule optimization. 

The amended specification of when a state should be pushed onto the state stack in 
a parser that implements minimal push optimization, direct goto optimization, and 
right-recursive rule optimization is the following. A state Q need be pushed only if 

(1) 9 R , S , D :  R E Rules, S ,D E States, 
(Q,D,R,S) E Reductions, and 

(2)  ? f R , S , D :  R E Rules, S ,D  E States, 
(Q,D,R,S) E Reductions, 
I{(q,d,R,S) I q,d E States, d f S or R has semantics}) )1 

The only change from before is that we ignore a reduce tuple in the second condition 
if the destination state is identical to the reduction state and if the production rule has 
no associated semantic actions. 

Unit rule elimination 
Grammars typically contain many production rules of the form A + X, where X 

represents either a terminal or non-terminal symbol. Such a production is called a unit 
rule. 

LR parsers generated from grammars containing unit rules usually have many states 
like state S ,  in the following scenario. Consider state S ,  which has an outgoing transition 
labelled by symbol X, which can be either a terminal or non-terminal symbol. When 
state S1 accepts X, control is passed to state S ,  where a reduction by rule A + X takes 
place. This causes a goto action, corresponding to a transition away from state SI to 
state S3 on symbol A, to take place. 

If there are no semantic actions associated with the unit rule, there is no reason why 
state S1 should not simply have a transition to S3 labelled by X. And the tran-ition to S2 
labelled by X should be deleted. This transformation is known as unit-rule elimination or 
chain rule elimination and is a standard optimization technique for LR parsers.'", 
l 4  We mention it here because it is an optimization that eliminates many push and pop 
operations from the parser. The  effect on a directly executable parser is to reduce both 
space and execution time requirements. 

Although we have specifically implemented unit rule elimination in our generator 
for directly executable parsers, branch-chaining optimization (described below) often 
achieves the same result. 

LOW-LEV EL OPT1 hl  I ZATI ON S 
Careful attention to the code patterns is necessary if we wish to maximize speed while 
maintaining an acceptable size for the parser. A good peephole optimizer' would 
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perform some of the code transformations described below. But, since these transform- 
ations are important for obtaining good performance, they are explicitly implemented 
by our generator for directly executable parsers. 

Code sharing 
Many states in the parser have identical or nearly identical sets of outgoing transitions. 

For example, states 0, 3 ,  4 and 5 of the parser shown in Figure 1 have identical T- 
table actions. Very significant reductions in parser size can be achieved with little or 
no penalty in terms of increased execution time if the code for such states is shared. 

We have found it convenient to categorize state similarity into four different classes, 
and associate different code transformations with each. Note that for the purposes of 
finding similar states, we consider T-table actions and N-table actions independently. 

The first category occurs when two states have identical sets of actions. The  obvious 
transformation in this case is to replace one copy of the code by a branch to the other 
COPY * 

The second category covers the case when the actions in one state form a subset of 
the actions in another state. In this case, the obvious transformation is for the two 
states to share the code for their common actions. For example, the state which has 
more actions could contain just the code for the actions which are peculiar to it and 
this code is followed by a branch to the other state. We note, however, that the code- 
sharing transformation applied to a sequence of conditional tests may increase the 
execution time if the sequences are subsequently converted into binary searches (see 
below). 

The third category occurs when two states have similar, but not identical, actions 
and neither set of actions is a subset of the other. A small-scale example appears in 
Figure 1 with states 2 and 6. Again, the obvious transformation is for both states to 
contain code for the actions which they do not have in common followed by a branch 
to some shared code. (The second category can be seen as a special case of the third 
category.) In  the case of states 2 and 6 in Figure 1, the benefit of them sharing code 
is small. In practice, it is desirable to require that two states must have a minimum 
number of actions in common before a code sharing transformation is applied. 

The fourth category occurs when several (more than two) states have similar, but 
not quite identical, actions. As a very small scale example, suppose that state S1 
includes actions (A2, A3), which are performed when the input symbol is t l  or t2, 
respectively. Similarly, state S2 includes actions (A1 , A3), performed when the input 
symbol is t l  or t3, and state S3 includes actions {Al, A2}, performed when the input 
symbol is t l  or t2. Any two of these states can share code using the technique described 
above, but a different strategy must be used if all three states are to share code 
efficiently. This situation frequently arises with practical grammars, but on a larger 
scale. For example, there are many states associated with recognition of expression 
structure. They are differentiated only by the precedences of the expression operators 
that have been recognized so far. These states accept similar, but not identical, sets of 
terminal tokens and have similar actions associated with the tokens. Therefore, it is 
worth while to perform a code transformation that allows the code to be shared. Our 
solution is to group the common actions together and to test a vector element in each 
state to determine if control should be passed to the combined action group. The code 
for the small-scale example might have the form: 
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S1: if ( bvectorl [token] == 1 1 goto G; 
. . . other actions for state 1 

S2: if ( bvector2[tokenl ==  1 ) goto G; 
, . . other actions for state 2 

S3: if ( bvector3[token] == 1 ) goto G; 
. . . other actions for state 3 

G: switch( token ) { 
. . . code for actions A l ,  A2 and A3 
1 

The  data storage required for the vectors and the execution time cost of performing 
the indexed vector test make this transformation worth while only if  a relatively large 
number of each state's actions can be included in the group. In practice, the same 
vector may be tested in several states, and this reduces the storage cost somewhat. 

Conditional sequences 

The T-table actions for each state normally require the current input token to be 
compared against several possible values. Similarly, the N-table actions for each state 
require comparisons of the non-terminal symbol that appeared on the left-hand side of 
a reduced production rule against various possible values. ll'hen the number of possi- 
bilities is small, say seven or fewer, a series of comparison tests, as used in the sample 
code of Figure 3 ,  is reasonably efficient. However, when the number of possibilities is 
larger, more efficient code should be used. (\Vith the C grammar that was used in our 
experiments, one state has 30 possibilities for the nest terminal symbol and several 
states allow 29 possibilities.) 

As Pennello observed,i a faster approach is to organize the tests as a binary search. 
.4n alternative method, suitable when the number of tests is large and the range of 
possible values is reasonably compact, is to use a jump table, corresponding to the 
usual implementation of a switch statement in C or a case statement in Pascal. 
Depending on the number of possible values, our parser generator selects whichever 
of these schemes appears to be most appropriate. 

Given information about the dynamic behaviour of the parser, it would also be 
possible to order the tests so as to minimize espected execution time. However, this 
possibility is ignored in our current implementation of the parser generator. 

Branch chaining 

When the target of a branch statement is another branch statement, the first branch 
can be retargeted to transfer control to the destination of the second. This particular 
transformation is commonly included in the repertoire of peephole optiniizers, l 5  and 
should therefore be performed by an optimizing compiler. 

However, we stress the importance of the branch-chaining optimization because it 
can have a similar effect to other, apparently more sophisticated optimizations, when 
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applied to a directly executable parser. For example, consider the following grammar 
for arithmetic expressions: 

0. S + E  
1. E + E + T  

3. E + T  
4. T + T * F  
5. T + T I F  
6. T + F  
7. F + ( E )  
8. F + id 

2. E + E - T  

There are states in the parser for this grammar where the following sequence of unit 
rule reductions can occur: F + id, T -+ F, E + T. These are unit reductions, as discussed 
earlier. If there are no semantic actions associated with these unit rules, then after 
direct goto optimization, the code for one of these states should be similar to the 
following. (We assume, for sake of example, that this state happens to be numbered 
7.) 

S7: token = scan(); 
P7: push( 7 1; 

if (token == id) goto SR8; 
. . . omitted code 

. . . omitted code 

. . . omitted code 

SR3: goto P27; 

SR6: goto SR3; 

SR8: goto SR6; 

If branch optimization is applied, the test in state 7 would be simplified to 

if (token == id) goto P27; 

This is similar to what one would expect if unit rule elimination optiniization had been 
applied to the parse tables. 

IhIPLEMENTATION A N D  EXPERIMENTAL RESULTS 

Structure of the parser generator 

A generator for directly executable parsers has been implemented in four phases: 

1. LALR( 1) parse table generation. 
2. Stack use optimizations and PM-code generation. 
3 .  PM-code peephole optimization. 
4. PM-code to target language translation. 
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The  first phase reads a grammar specification given in the same notation as supported 
by y ~ c c . ~  Every construct of yacc except for the semantic stack (the stack whose 
elements are accessed by ‘$$’ ‘$1’, . . . notation) and support for error recovery are 
provided. The semantic stack is not supported because the minimal push optimization 
causes positions in the state stack to lose their one-to-one correspondence with positions 
in the semantic stack. The  user can, of course, use explicitly declared stacks in the 
semantic action code. The  lack of support for error recovery may be a more serious 
deficiency, depending on the application in which the parser will be used. A discussion 
of how error recovery could be supported appears at the end of this paper. 

The second phase of the parser generator reads the parse table into memory and 
applies the optimizations described in third section of this paper. The  implementation 
does not assume that the tables are generated by an LALR( 1) algorithm; thus it would 
be relatively straightforward to substitute an SLR( 1) or LR( 1) generation algorithm 
for the first phase. The output of the second phase is a directly executable parser, 
described in an idealized and very compact notation that we call PM-code (short for 
parser machine code). PM-code can be viewed as the assembly language for a hypotheti- 
cal machine which has a state stack, a register named T which holds the last input 
token and a register named L which holds a non-terminal symbol. The  machine has 
instructions for testing the T register, L register or the top of stack, for reading a new 
token into the T register, for storing a value in the L register, pushing and popping 
the state stack, and so on. 

The third phase applies the optimizations described in fourth section of this paper. 
Even though branch chain optimization is performed by many compilers (and thus 
would be applied to the generated parser), we perform this optimization because it 
reduces the volume of PM-code and because it makes code sharing optimizations easier 
to apply. The output from the third phase is in the PM-code format, except that a 
greater variety of instructions is used. For example, after this phase, the PM-code may 
contain bit-vector tests, whereas none would have been present in the input. 

The fourth phase is constructed as a small, simple, program so that retargeting to 
different languages is relatively easy. We currently have two implementations. One 
performs a simple translation from PM-code to the C language, the other translates to 
SUN-3 assembly language. (The SUN-3 computer series use the Motorola 68020 and 
68030 CPUs.) Comparing parsers generated by the two versions allows us to estimate 
the extra overhead introduced by the use of C. 

The C version of the translator generates C code as described in this paper. The  
assembly language version attempts to generate the best possible code. It implements 
the stack of states as a stack of labels, and uses the system stack for this purpose. 
There are three benefits of using the system stack instead of a separate stack. The  first 
is that the CPU provides efficient instructions for pushing label addresses onto the 
system stack, both ‘jsr’ and ‘pea’ can be used for this purpose on the MC68020. The  
second benefit is that the stack size is limited only by the maximum stack size of the 
Unix process. The third benefit is that stack overflow checks are implicitly performed 
by the machine. 

Experimental data 

Grammars for the C and Pascal languages were used to generate directly executable 
parsers, and timing experiments were performed on these parsers. Comparisons with 
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parsers created by the yacc parser generator' were also performed, but it should be 
realized that yacc was not designed with fast parsing in mind. 

Two grammars for C were used. The  first grammar was a slightly modified version 
of a published gramrnar.l6 The minor changes to the grammar comprised, for the most 
part, the inclusion of semantic actions to process declarations of type identifiers. The 
C language separates the expression operators into 15 different precedence levels and 
the first grammar uses a different non-terminal symbol to represent each precedence 
level. The second C grammar is based on the first, except that the precedence levels 
of the operators are not defined by the grammar rules. Instead, precedence declarations 
are supplied to the parser generator and are used by the algorithm that constructs the 
LR(0) states. The second grammar eliminates almost all unit rule reductions that occur 
when expressions are parsed. Parsers based on the second grammar would usually 
execute faster than parsers created for the first grammar. The  two grammars are named 
C and Clprec, below. 

Similarly, two Pascal grammars were used. Again, the first grammar is similar to 
one that has been published." (Some minor manipulation was required to expand 
extended BNF notation into production rules suitable for use with a LR parser.) The  
first grammar embodied the operator precedence levels in the production rules. For 
comparison purposes, a second grammar where the precedence levels are declared 
separately was also created. The two grammars are named Pasc and Pusclprec, below. 

The overall characteristics of the four grammars and of their LR parse tables are 
summarized in Table I .  The fifth line in the table shows how many LR(0) states 
remain after shift-reduce optimization is applied. The sixth line shows the number of 
states which need to be stacked after the minimal-push and direct-goto optimizations 
described in this paper have been performed. The last line in the table shows how 
many states needed to be duplicated to eliminate pop count conflicts associated with 
the minimal-push optimization technique. 

For each of the four grammars, three parsers were generated. Our own parser 
generator was used to create two of the parsers-one created as a C program and the 
other as an assembly language program. The third parser was created by jm-c ."  

The C source code file used for timing the three C parsers comprised 1395 lines 
containing 38,561 characters. (The file was the source code for the suntools program 
included with version 3.5 of the SunOS UNIX operating system.) But some of these 
lines were directives to the C preprocessor that caused several thousand more lines of 
C code to be included. The file size after preprocessing was 10,193 lines, containing 
122,880 characters or 26,738 lexical elements. However, a large proportion of the lines 

Table I .  Characteristics of the test grammars 

( y  C'lprec Pa., c f'nsr lpiec 
_______---__ _ _ _ ~ _ _  

Rules 238 214 172 167 
Non-terminals 93 69 71 66 
Terminals 84 84 61 61 
LR(0) states 345 342 305 312 
LR(0) states (after SR optimization) 172 216 163 181 
Push states 74 96 79 91 
Pop count coriflicts 9 10 0 0 
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in the output from the preprocessor were empty (because they were empty in the 
original source files or contained only comments or contained preprocessor directives 
in the original files). If empty lines and lines containing file-name/line-number directives 
(used by the C compiler to correlate error messages with positions in the original input 
files) are stripped from the file, the size is reduced to 3169 lines or 105,197 characters. 
Since it is unclear which file size should be used when computing the speed of a C 
parser, we avoid stressing speeds measured in units of source lines or source characters 
per minute. 

T h e  Pascal source file used for timing the Pascal parsers comprised 4462 lines 
containing 100,684 characters or 18,526 lexical elements. (This  large Pascal program 
is the source code for a lexical analyser generator called nf?i-d7~z~-k.)  Since standard 
Pascal" does not have a preprocessor, these figures are unambiguous. Stripping all 
comments and blank lines from the file \vould reduce its size t o  3934 lines or 89,241 
characters. 

T h e  sizes and the execution times for each of the 12 parsers are given in Table 11.  
T h e  execution times do not include lexical analysis (or preprocessing time for the C 
source files). However, the C parsing times do include some overhead entailed in 
recognizing declarations of type identifiers and entering these identifiers into a table 
that is accessed by the lexical anal!ser. Other than the code needed to handle type 
identifier declarations, no semantic actions kvere perfornied. Each time given in the 
table is an average over ten measurements. If the parsing rates are converted into lines 
per minute, the figures for the directly executable parsers range from 800,000 lines per 
minute to over 2 million lines per minute, depending on how the file size is determined. 

T h e  directly executable parsers are five to eight times faster than the equivalent 
parsers generated by ~ a c l - , "  at the expense of a modest increase in memory require- 
ments. Unfortunately, it is not possible to compare the parsing speeds with those 
observed by Pennello.' (He used a different grammar, gave his timings for a different 
CPU and gave no comparisons with parsers generated by JWCC.)  

How effective were the different optimizations in reducing the space and time 
requirements of the parsers? Table I11 shows the effect of disabling the minimal push 
and direct goto optimizations on the parser generated for grammar C. Right-recursion 
optimization is not included in the table because our  saniple grammars contain very 

Table 11. Sizes and speeds ( i f  the parsers 

_ _ . ~ ~  ~- ~~ ~ 

C' parser 
Source code size (lines) 
Object code size (bytes) 
Execution time (seconds) 

Source code size (lines) 
Object code size (bytes) 
Execution time (seconds) 

Source code size (lines) 
Object code size (bytes) 
Execution time (seconds) 

.-lsser~~bler pawer 

Ibcc parser- 

( '  

2614 
7688 
0.44 

60 1 
5832 
2.95 

1872 
8400 
0.28 

27.39 
8240 
0.23 

632 
6536 
1.54 

1173 
6032 
0.13 

1848 
5408 
0- 13 

417 
4184 
0.91 

1305 
6928 
0.13 

2171 
6248 
0.14 

500 
4840 
0.87 
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Table 111.  Effect of stack optimizations 

Optimizations applied 

Push states 
Size of parser (lines) 
Object code size (bytes) 
Execution time (seconds) 

168 168 98 74 
2004 1937 1805 1704 
9472 9264 8616 8256 
0-66 0.66 0.62 0.54 

few right-recursive production rules. All the simpler optimizations were still performed. 
The  importance of the simpler optimizations is hard to quantify because some of these 
optimizations may or may not be automatically performed when the parser is assembled 
or compiled. Without question, they are important for reducing the storage require- 
ments to a size comparable to that of a table-driven parser. As an illustration of their 
importance, we generated an assembly language parser for the C grammar, above, 
where execution of the third phase of the parser generator was suppressed. This caused 
every sequence of conditional tests to be implemented by a jump table and no code- 
sharing optimizations were performed. The  size of the generated parser was 13,291 
lines of SUN-3 assembler source code, which assembled into 28,144 bytes of object 
code-more than three times larger than the optimized parser. The  execution speed 
was almost identical to that observed for the optimized assembly language parser 
generated for the same grammar. That is, the average time needed to parse the sample 
file was 0.44 seconds. We can conclude from this that the optimizations performed in 
the third phase of the parser generator are neutral in their effect on execution speed. 

is, question which is sure to arise is 'How much longer does it take to generate a 
directly executable parser that to generate a table-driven parser?'. Here is a partial 
answer to the question. The  time required by our parser generator when processing 
the C grammar is 27.3 CPU seconds on a SUN-3/280 system whereas the corresponding 
time required by the yncc tool on the same computer is 15.4 CPU seconds. For the 
smaller Pascal grammar, there is much less difference. Our parser generator requires 
6.7 CPU seconds and yacc requires 5.3 CPU seconds. 

SUMMARY AND FURTHER WORK 

We have described three different optimization techniques for directly executable 
parsers which simultaneously increase their speed while decreasing their storage require- 
ments. When used in conjunction with other, simpler, storage optimizations, the 
resulting parsers can recognize their input at an incredibly fast rate. The  parsers are 
five to eight times faster than the equivalent table-driven parsers generated by yucc, 
while requiring only a modest amount of extra memory. 

A possible appliction area for high-speed parsing is in code generation. Some code 
generation methodsl8, ") use a parser to perform pattern matching against intermediate 
code. Typically, each pattern represents a machine instruction of the target computer 
that is emitted when the pattern is recognized. However, a standard parser is not quite 
powerful enough to perform the job. It is necessary to attach semantic predicates to 
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some production rules that have the effect of disallowing use of the rule unless the 
predicate evaluates to true. A generator of directly executable parsers would need to 
be extended to provide support for semantic predicates. A simple technique to provide 
such support for the yacc parser generator has been described'" and there is no reason 
why similar approach should not be used with directly executable parsers. 

We have definitely not reached the ultimate in parsing speed. Our directly executable 
parsers simply represent a reasonable compromise between storage and time efficiency. 
It is possible to generate a parser with more states that performs fewer rule reductions. 
For example, the grammar could be preprocessed by substituting the right-hand sides 
of productions for occurrences of the left-hand sides. An alternative approach with a 
similar effect is to unroll cycles in the LR parser by duplicating states. If carried to 
its ultimate conclusion, the parser would approximate a (very large) finite state automa- 
ton. Such a parser would rarely need to push or pop the stack. 

There are at least two possibilities for improving the parsing speed without signifi- 
cantly increasing the storage cost. One approach would be to optimize the order in 
which equality tests on the current input symbol are performed. The  tests should be 
ordered according to the actual frequencies with which the symbols are encountered 
in the various states of the LR parser. However, some preliminary experiments indicate 
that the effect on parsing speed is not very large. A second way (suggested by one of 
the referees) in which parsing speed might be increased is to borrow an idea from 
Reference 21. After a rule reduction, only a subset of the non-terminal transitions used 
in the goto action are possible. LVith some analysis of the LR items that generate each 
state, it should be possible to split the non-terminal transitions into the appropriate 
subsets, so that the number of tests needed to find the correct transition is minimized. 
On the other hand, the splitting process is likely to interfere with code sharing 
optimizations and lead to an increase in total memory requirements. 

The current implementation of our parser generator provides no support for error 
recovery. In an interactive environment where the compiler invokes a source editor at 
the position of the first syntax error, no automatic recovery scheme is necessary. Nor 
would error recovery be needed if the parser is used in the code generation phase of a 
compiler. However, if the parser generator is to become useful in other situations, 
some recovery scheme should be implemented. Pennello observed that a stack of 
standard LR(0) state numbers can be re-created and with a table that contains the 
standard LR parsing actions, the usual LR recovery techniques can be applied. The  
same observation is true of our parsers too, although a little more computat' m would 
be needed to re-create the state stack (due to our minimal push optimization technique). 
We are investigating the feasibility of including Rohrich's recovery method" into the 
directly executable parsers without incurring a large storage cost for extra tables. The  
important observation to make is that two consecutive items on the stack of the directly 
executable parser define a path through the recognizer's states. From the path through 
the parser's states to the state in which a syntax error is detected, it is possible to 
construct the minimum cost continuation for the error state. If the parser and the 
lexical analyser interact appropriately, it would be possible to insert tokens from the 
continuation sequence into the input stream, and thus implement Rohrich's recovery 
scheme. 
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