
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 20(6), 515-535 (J U N E 1990)

Even Faster LR Parsing

R . NIGEL HORSPOOL AND MICHAEL WHITNEY
Department of Computer Science, University of Victoria, P.O. Box 1700, Victoria, R.C.

1.7811' 2Y2, Ca'anada

SUMMARY

Conventional LR parser generators create tables which are used to drive a standard parser
procedure. Much faster parsers can be obtained by compiling the table entries into code that is
directly executed. A possible drawback with a directly executable parser is its large size. In this
paper, we introduce optimization techniques that increase the parsing speed even further while
simultaneously reducing the size of the parser.

KEY WORDS Parsing LR parsers Compilers

INTRODUCTION

The syntax analysis phase of a compiler can represent a significant proportion of the
entire compilation time. Waite and Carter' give figures showing that a recursive descent
parser consumed 24 per cent of the entire compilation time in a Pascal compiler that
they studied. Of course, this number is strongly dependent on the parsing technique
and on the nature of the compiler. But it does serve as a warning that parsing should
not be ignored when the goal is to achieve fast compilation rates.

There are two families of parsing methods in widespread use. One family corresponds
to a top-down approach to parsing, and the class of grammars that are accepted is
LL(1). One method of implementing LL(1) parsers is by recursive descent, but a
more efficient technique is to use a table-driven parser. In fact, Waite and Carter
managed to reduce the proportion of time spent parsing in their Pascal compiler from
24 to 7 per cent by substituting a table-driven LL(1) parser coded in assembly language.

The second family of methods is based on bottom-up, shift-reduce, parsing. The
classes of grammars that are normally used are SLR(l) , LALR(1) or LR(1) depending
on the parser generator employed. We will use the term LR parsing to refer to this
collection of methods. Until recently, LR parsers have all been implemented using the
table-driven approach. The parser generator transforms the grammar into tables whose
entries must be interpretively executed by a driver program.

Because LALR(1) grammars have more expressive power than LL(1) grammars,
the syntax rules for most programming languages are presented in LALR(1) form,
whereas LL(1) grammars are provided for only a few. Therefore, it can be argued that
a general-purpose parser generator should accept either the LALR(1) or LR(1) gram-
mar class, rather than be restricted to the LL(1) class. A discussion of the pros and
cons of the LL and LR methods can be found in Reference 2, pp. 196-200.

0038-0644/90/0605 15-21$10.50
0 1990 by John Wiley 8z Sons, Ltd.

Received 9 May I989
Revised I6 October 1989

5 16 R. N. HORSPOOL AND M . WHITNEY

There has been considerable research into reducing the storage requirements of
parsers,3 but there has been comparatively little work directed towards increasing
parsing speed. Table-driven LR parsers can be made to execute very much faster
through careful coding of the driver program. Grosch'. ' has followed this approach
and can parse C source code at a rate of approximately 400,000 lines per minute on a
Motorola 68020 processor. This is approximately twice as fast as a parser generated by
ycicc,6 the standard parser generator supplied with Unix.

An alternative approach, used by Pennello,' is to convert table-driven LR parsers
into directly-executed code. Instead of having a drii.er program access a table entry
and interpret its actions, each table entry can be 'compilcd' into low-level statements
that perform the actions directly. By compiling LR tables into assembly language,
Pennello increased the speed of \.arious parsers by a factor of 6.5, achieving a processing
rate of 240,000 lines per minute on an Intel 80286 processor with a 8 MHz clock rate.
.4 speed-up by a ractor of 10 for a COBOL parser on a proprietary architecture was
also reported. niight be expected, the conversion into code came at the expense of
an increase in memory requirements-a growth factor of 3.6 was reported. It is also
possible to compile the entries of a LL(1) parser into code, and Gray" has implemented
such a scheme. Gray chose to compile the LL(1) parser into C code, and therefore
his parser generator has the advantage of being portable. On the other hand, the C
language is somewhat less flexible than assembly language and some loss of coding
efficiency inevitably occurs (especiallJ- when switch statements are used in the C source
code).

We believe that a directl!, esecutable parser generated from LL(1) tables will usually
be faster than one generated from LR(I) tables. If the L L (1) parser is implemented
by recursive-descent or by a table-dri\-en equivalent of recursive-descent with an explicit
control stack, it will perform much less stack manipulation than the LR(1) equivalent.
This form of LL(1) parser pushes and pops an item onto its stack no more than once
for each application of a production rule. T h e number of stacking operations is reduced
even further if iteration is used instead of recursion when recognizing constructs defined
by right-recursive production rules. .An LR parser, however, pushes and pops an item
onto its state stack for every symbol that is read as well as for each application of a
production rule.

In this paper, we introduce some optimization techniques that considerably reduce
the number of stack operations performed by directly executable LR parsers, and we
will describe a parser generator that implements these techniques. Our parser generator
is compatible with jwcc and generates a parser in either C source code form or in the
assembly language of the SUN3 computer. Retargeting the parser generator to a
different language is straightforward. T h e stack optimizations have the benefit of
reducing the. size of the parser while simultaneously increasing its speed. When com-
bined with some other, simpler, optimizations, we can generate parsers that are only
slightly larger than their table-driven counterparts, but execute up to eight times faster.

T h e following sections of this paper give an example of an unoptimized directly
executable parser, introduce some optimizations that reduce stack use, explain sonie
additional simple optimizations and give performance results achieved by our
implementation. No specific knowledge of LR parser generation techniques is assumed.
T h e interested reader can refer to texts on LR parsing'" or on compiler construction'
for this information.

T h e results reported here represent a re-implementation of, and an extension to,
some earlier work.". l 2

EVEN FASTER LR PARSING 517

AN EXAMPLE

Before examining optimization of directly executable parsers, it would be helpful to
begin with a small example of the parse tables produced by a LR parser generator,
and to look at how the tables might be translated into C code.

A grammar and its LALR(1) parse tables

multiplication operators:
Here is a small grammar for arithmetic expressions containing infix addition and

0. S + E
1. E + E + E
2. E + E * E
3. E + (E)
4. E + id

T h e symbol id represents an identifier. With declarations to specify that the + and
* operators are left-associative and that * has higher precedence than +, the grammar
would be acceptable to the vacc parser generator. (Some grammar transformations
would be necessary before the grammar would be acceptable to parser generators that
do not support such declarations.) This grammar describes arithmetic expressions such
as

a + b
a + b * c
(a + b) 6 (c)

and so on.
An LALR(1) parser

encode the actions of
sometimes called the T
by terminal symbols of

generator would convert the above grammar into tables that
a LR parser for this grammar. T h e main parser tables are
table and the N table. T h e columns of the T table are indexed
the grammar, whereas columns of the N table are indexed by

non-terminal symbols. Figures 1 and 2 show the tables for our example grammar. T h e
terminal symbol EOF represents an end-of-input marker. We note that an SLR(1) or
LR(0) parser generator would generate similar tables but containing fewer blank entries.
An LR(1) parser generator would normally create larger tables with more rows.

r l

* () EOF

acc
s4 rO

s3

s3
s3
s3

s4 sr3
s4 r l r l 7

Figure 1 . T table Figur-e 2 . S table

5 18 R. N. HORSPOOL AND M. WHITNEY

However, all four parsing methods use the same kinds of table entries and process the
table entries in exactly the same way.

A parser that interprets the actions in these tables maintains a stack of state numbers.
The top state number on this stack represents the current state of the parser. The
parser selects an action from the T table based on the current state and on the current
input symbol. There are five different kinds of entry used in the T table.

An entry like ‘s7’ indicates that a shift to state 7 should occur. The new state
number, 7 , is pushed onto the state stack and a new input symbol is read.
An entry like ‘r4’ indicates that a reduction using production number 4 should
occur. There are three parts to a reduction. First, if there is any semantic action
associated with rule number 4, it should be executed. Secondly, as many entries
are popped off the state stack as there are symbols on the right-hand side of rule
number 4. Thirdly, the symbol that appears on the left-hand side of the pro-
duction rule is used to select an action from the N table (see below).
An entry like ‘sr5’ represents a composite shift-reduce action. I t is equivalent to
the pair of actions: ‘sk;rS’ where k represents an arbitrary state number. T h e
value of k is immaterial because the reduce action pops and discards the value
immediately after it is pushed. The use of shift-reduce actions allows many
states to be eliminated from the parser and hence makes the tables considerably
smaller.
A blank entry indicates that a syntax error has been detected. A table-driven
parser would normally report the error and then attempt to resume the parsing
process after executing a syntactic error recovery algorithm.
Finally, the entry ‘acc’ (accept) indicates that the parser should halt and report
a successful parse.

There are three kinds of entry in the N table. Entries in the table are selected by
the current state (the topmost state number on the stack) and by a non-terminal
symbol.

1.

2.

3.

4.

5 .

1.

2.

3.

An entry like ‘s3’ indicates that state number 3 is pushed onto the state stack.
Parsing would then continue by reverting to use of the T table (where the next
action is determined by the new state on top of the stack and by the current
input symbol).
An entry like ‘sr2’ again represents a composite shift-reduce action. T b effect
is the same as executing a entry like sk from the N table immediately followed
by ‘1-2’ from the T table. This implies that another N table action is executed
immediately after the ‘sr2’ action.
A blank entry represents a ‘don’t care’ entry because it can never be accessed,
regardless of whether the input token sequence is syntactically correct or not.

Directly executable parser code
A straightforward translation of the T and N tables into directly executable C code

is easy to accomplish. If we make only a minimal attempt to generate good code, the
code might look like that shown in Figure 3 .

Each row of the T table is translated into a standard block of code with two entry
points. The row for state number n is converted into code with the entry labels Sn

EVEN FASTER LR PARSING 5 19

SO:
PO:

S l :
Pi :

s2 :
P2:

s7 :
P7 :

/* Code for T Table Actions */
token = scan();
push(0 1;
i f (token == id) goto SR4;
i f (token == I(’) goto S3;
goto Error;
token = scan();
push(1 1;
i f (token == EOF) return;
goto Error;
token = scan();
push(2 1;
i f (token == pt’) goto SS;
if (token == ‘*I) goto S4;
goto RO;

code for states 3-6 omitted

token = scan();
push(7);
if (token == ’*I) goto S4;
goto R i ;

SRO :
RO :
SR1:
R i :
SR2:
R2 :
sR3 :
R3:
SR4:
R 4 :

IXT:

/* Code for Rule Reductions */
push(-1);
pop(1 1; lhs = S; goto PXT;
push(-1 1;
pop(3 1; lhs = E; goto IXT;
push(-1 1;
pop(3); lhs E; goto IXT;
token = s c a d) ; push(-1 >;
pop(3 1; lhs = E; goto IXT;
token scan(); push(-1 1;
pop(1 1; lhs = E; goto IXT;

/* Code for I Table Actions */
switch(t o p 0) {
case 0:

if (lhs == E) goto Si;
goto P2;

case 3:

case 4:

case 5:

goto P6;

goto SR2;

goto P7;
1

Error:
... report ihe e m r

Figwe 3. Directly executable parser

and Pn. The former calls the scan function to read a new token whereas the latter does
not. T h e code continues with a statement to push the current state number onto the
stack and then performs a sequence of tests on the current input symbol. A minor
optimization, seen in states 2 and 7, is to eliminate some comparisons by making a
rule reduction into a default action. The only consequence of this optimization is to
delay detection of a syntax error in the input until after the rule reduction has been
performed.

Each row of the N table translates into a clause in a switch statement. The row for
state number n is converted to code with a label of the form case n , followed by a
sequence of tests. The subject of these tests is the symbol that appeared on the left-
hand side of the previous rule reduction. An action like ‘s2’ is coded as a transfer to
label P2, rather than to S2, because the parser should not read a new symbol. Since
blank entries in the N table cannot be accessed, empty rows need not be converted
into code. For the same reason, there need not be an explicit test for the last possibility
in a sequence of tests on the left-hand-side symbol.

Each rule in the grammar is translated into a standard block of code with two entry
labels. The label with the form Rn handles a reduce by rule n (corresponding to an
entry of the form ‘rn’ in the T table). The code for a reduce first pops k values off
the state stack, where k is the length of the right-hand side of production rule number
n. Then it sets the Ihs variable to the left-hand side symbol of rule n , and transfers
control to the switch statement. If a semantic action is associated with the production
rule, the code for this action should be included.

The label with the form SRn handles a shift-reduction action by rule n (corresponding
to an entry of the form ‘sm’ in either the T or N table). If the entry occurs in the T

520 R . N . HORSPOOL .4ND M . WHITNEY

table, a new symbol must be read. A fictitious state number is pushed onto the stack,
and then the reduce action code can be executed. T h e SRn label and the push operation
may be omitted if there are no actions of the form srn in either of the T or N tables.

No doubt the reader will have noticed that the code in Figure 3 can be considerably
improved. One observation is that states 3, 4 and 5 in T table produce nearly identical
code (differing only in the state number that is pushed onto the stack). A second point
is that not all the labels defined in the code are referenced-implying that these labels
and several lines of code may be deleted. The use of C as a target language is also a
source of some minor inefficiencies. For example, if the target language permitted
statement labels to be used as first-class objects (as in Fortran, PL/I or assembly
language), we could implement the state stack by a stack of statement labels and thus
replace the switch statement labelled N S T by an indirect branch. Pennello’s directly
executable parser’ used this approach.

We will return to issues of code quality later. First, Lye will consider optimizations
that reduce usage of the state stack.

STACK ACCESS OPTIRIIZATIONS

Many of the push and pop actions performed during a LR parse are redundant.
\Ve present, below, the ‘minimal push’ optimization technique that eliminates these
redundant actions. In addition, we present two additional optimizations that have the
effect of increasing the applicability of minimal push Optimization.

Minimal push optimization
Suppose that the grammar contains a production rule

A - t a b c d

where a , b, c and d represent terminal symbols. Further, suppose that there are no
alternative productions for A that begin with a . If the LR parser begins recognizing
an instance of A in a context where there are no possibilities other than A, the parser
should contain a sequence of states like those shown in Figure 4. (If state 5 has been

Reduce :
A + a b c d

etc.

I.’igure 4 . State stnrcture for A 4 a b c d

EVEN FASTER LR PARSING 52 1

eliminated by shift-reduce optimization, the argument given below requires only minor
changes.)

While recognizing A from state 1, the parser reads the symbols a, b, c, d and follows
the sequence of state transitions 1+2+3+4-+5 in the Figure. The numbers of each
of these states are successively pushed onto the state stack. At state 5, the parser
performs a reduction action using the rule A + a b c d. The action causes state numbers
2, 3, 4 and 5 to be popped off the stack and discarded without ever having been used!
The state number that is uncovered by the four pop operations (state 1) is used,
however. It and the left-hand-side symbol, A, are needed to determine that a transition
to state 6 is required after the rule reduction.

We make the observation that only states with non-terminal transitions (like state 1
in the Figure) need be pushed onto the stack. These state numbers are the only ones
which might be consulted after a rule reduction. For the parser whose tables are given
in Figures 2 and 3 , the states which need to be pushed are 0, 3 , 4 and 5. These are
the only states which have non-empty rows in the N table.

The obvious optimization to make to a directly executable parser, therefore, is to
generate statements for pushing the state number only in states that have non-terminal
transitions. In the code generated for a rule reduction, we also need to modify the
number of items to be popped off the state stack. For example, the rule reduction
code for A -+ a b c d in State 5 would have to be changed from popping four items to
popping zero items. Determination of the correct number of items to pop at a reduction
is not difficult. However, we will provide a moderately formal explanation.

We use the notation S,+S, to indicate that the LR parser has a transition from state
S, to state S, on symbol X. For a state S,, where a reduction L7i+Ai-lA-z. . . S,, is
performed, we define the reduction path set as:

1

Given a particular reduction path S,S2. . S,,, the number of items to pop is equal to
the number of states with non-terminal transitions among Sz,S3. . .S,,. (Note that S,
is not included in the list.)

Two problems arise. The first problem is that two different states may perform a
reduction by the same production, and the count of items to pop in one state may
disagree with the number of items to pop in the other state. The second problem is
that a particular reduction in some state may have more than one reduction path, and
some of these paths may require differing numbers of items to be popped.

T h e first problem, where there is a conflict between reduction actions in two different
states, can be resolved by replicating the rule reduction code in the directly executable
parser. Each replica can be modified to pop a different number of items off the stack.
It is then an easy matter to transfer control to the appropriate version of the rule
reduction code.

The second problem, where a reduction in a single state does not have an unambigu-
ous number of items to pop, is illustrated in Figure 5. In the Figure, states 1 , 2 and
4 have non-terminal transitions and cause items to be pushed onto the stack. If state
6 is entered by the path 1+3+5+6, the rule reduction should not pop any items off
the stack. But if state 6 is entered by the path 2+4+5-+6, one item (state number 4)
needs to be popped. We call this situation a ‘pop-count’ conflict.

522 R . N . HORSPOOL AND M . WHITNEY

Reduce :
A - a b c

There are at least two possible solutions to such a conflict. One possibility is to
insert some extra stack pushes into the reduction paths which have fewer pushes. A
solution along these lines must exist because, at worst, we can cause every state to
push its state number on entry-reverting to the behaviour of the unoptimized LR
parser. An alternative solution, and the one actually implemented in our parser gener-
ator, is to duplicate the states involved in the conflict. For example, the configuration
of Figure 5 would be transformed into the configuration shown in Figure 6. By this
means, the states 6 and 6' are given distinct numbers of items to pop from the stack
when a reduction by the rule A -+ a b c is to be performed. In other words, the second
problem with pop counts is reduced to an instance of the first problem.

In practice, we have found pop count conflicts to be rare. Only a very few states
need to be duplicated to eliminate the conflicts. Some figures appear towards the end
of this paper in the section on experimental results.

For a typical grammar, the proportion of stack pushes that are eliminated by the
minimal push optimization alone is not very high. We observed that only about 30 per
cent of pushes are eliminated, and this figure does not appear high enough to make
the optimization worth while. As one referee of this paper observed, two or more
adjacent terminal symbols in the right-hand side of a rule are necessary for the
optimization to be applicable. Typically, terminal symbols are used to separate non-
terminal symbols and they do not often appear in adjacent positions. However, the
optimization becomes highly effective when used in conjunction with the 'direct goto'
optimization, described next.

EVEN FASTER LR PARSING 523

An alternative method of eliminating some redundant stacking operations from the
parser would be to implement left-corner parsing.* With this technique, LR parsing
is used for parsing the right-hand sides’ production rules until it becomes unambiguous
as to which right-hand side is involved. At this point, LL(1) parsing is used to recognize
the remainder of the rule. Since we can implement LL(1) parsing with fewer stacking
operations than for the LR methods, some savings should occur.

Direct goto determination
A table-driven LR parser uses the N table to determine how to continue after a rule

reduction. The state stack is popped and the top state on the stack is used to select a
row in the table. The left-hand side of the rule determines the column, and thus the
appropriate shift or shift-reduce action is selected. The equivalent actions in the directly
executable parser (as seen in Figure 3) are to select some code to execute based on the
top state on the stack. Then a series of tests on the left-hand side symbol is performed.

If a rule reduction in some state always causes the parse to be continued in exactly
the same way, all the work of selecting a clause in the switch statement and the tests
on the left-hand side symbol can be suppressed. The rule reduction can be implemented
by popping the stack, if required, and then making a direct transfer of control to the
appropriate continuation code.

We will now give a more formal explanation of minimal push optimization and of
the direct goto optimization introduced in this section. In order to simplify the formal
explanation, we will assume that the parser does not contain any combined shift-reduce
actions. (It is straightforward, but not instructive, to remove this assumption.)

First, we will introduce some more terminology. Let States be the set of parser
states and Rules be the set of production rules which may be used in reduction actions.
If a state S may perform a reduction using the rule R = X -+A-,A-2 . . . -Y,,, we define
an ongin state for this reduction as being a state S, such that S1S2. . .S,,S is a reduction
path for rule R in state S. We also define the destination state associated with S , , R
and S as being the state, D , reached by the non-terminal transition on symbol S (the
left-hand-side symbol of rule R) from state S,. In other words, D represents one of
the possible states in which parsing resumes after a reduction by rule R in state S .

For the entire parser, we can define the set of Reductions as {(Q,D,R,S)} where Q is
an origin state associated with each rule reduction R performed in each state S , and Q
-+ D is a transition labelled by the left-hand-side symbol of R.

We can optimize the reduction by rule R in state S if the set of possible goto
destinations

{d 1 (q,d,R,S) E Reductions, q E States, d E States}

contains exactly one element. In this situation, the parser need not consult the state
stack after the rule reduction and can simply transfer control to the unique destination
state. We call this particular optimization direct goto optimization.

Since direct goto optimizations eliminate some accesses to the state stack, the minimal
push optimization can be extended. It is frequently the case that direct goto optimization
eliminates the need for pushing many more states.

The exact conditions under which a state should now be pushed are the following.
State (2 must be pushed onto the stack in a parser to which both minimal push and

524 R . N . HORSPOOL AND M . WHITNEY

direct goto optimization are applied only if

(1) S R , S , D : (Q,D,R,S) E Reditctivizs, and
(2) g R , S , D : R E Rules, S E States,

(0, I) ,R , S) E Reduct iotr s ,
I{cf I (q , c l , H , S) E Reductions, y,d E States}() 1

T h e first of the t\vo conditions requires that state Q has at least one non-terminal
transition. T h e second condition requires that at least one use of the non-terminal
transition after a rule reduction cannot be eliminated by direct goto Optimization.

If we were to apply minimal push optimization and direct goto optimization to the
parser shoum in Figure 3 , the folloLving changes Lvould be made. First, stack push
operations would be suppressed in states 0, 2, 6 and 7. Secondly, reductions by rules
0 and 4 would be implemented by direct control transfers. Thirdly, reductions by rules
1, 2 and 3 would require only one item to be popped (instead of the three items
required by a conventional LR parser).

Right-recursive rule optimization
Consider how lists of identifiers separated by commas may be described by grammati-

cal productions. one possibility is to use i-i,g/ri-t~ci~isi~~e production rules, as follows.

L -+ id LL
LL -+
LL -+ , id LL

An alternate possibility is by using left-i-ecursic~e production rules, as follows.

L + id
L + L , id

T h e left-recursive formulation cannot be used with non-backtracking, LL(1)-based
parsing methods. T h e parser is unable to determine which of the two rules to use
when it begins to match the symbols on the right-hand side. T h e right-recursive
formulation, however, works very well with recursive-descent or table-driven LL(1)
parsers. It is particularly effective if the tail-recursion implied by the third production
rule is optimized into an iterative loop.

A parser based on one of the LR methods can be used with either formulation.
(This is one of the reasons why the LR methods are often preferred to the LL
methods.) But the left-recursive formulation is much preferable to the right-recursive
form. An LR parser, constructed by the standard method from the right-recursive
grammar, will perform a shift action for every identifier and comma in the list that is
being parsed. It will not perform any reductions until a shift action has been performed
for the final identifier in the list. Thus , i f the list contains ti identifiers, 2tz-1 states
will be pushed on to the state stack without any intervening pop operations. T h e
unfortunate implication is that the amount of storage allocated to the stack restricts
the maximum length of a list that can be parsed by a normal shift-reduce parser using
a right-recursive grammar. In contrast, if the left-recursive formulation is used, a list
of indefinite length can be parsed with a stack that has space for just three items.

EVEN FASTER LR PARSING 525

T h e minimal push optimization, introduce above, reduces stack use for the right-
recursive grammar somewhat. For example, a list containing n identifiers would require
only n stack pushes, because pushes of the state where the comma separator is
recognized are suppressed. However, it would definitely be advantageous to reduce
stack use even further.

As the following example will illustrate, the push operations occurring during recog-
nition of a construct defined by a right-recursive rule may indeed be unnecessary. T o
simplify the explanation, we use a slightly simpler grammar than the one given above.
Consider a grammar that includes the following three rules.

1. S - + . . . L
2. L - + a , L
3. L + b

The dots indicate that some symbols in the first rule are not shown. T h e non-terminal
L generates lists of a symbols terminated by a b symbol and separated by commas. If
the grammar contains no other references to the non-terminal L, the LR parser will
include the states shown in Figure 7.

In this parser, the minimal push optimization technique will determine that only
states 1 and 5 (both with non-terminal transitions on L) need to be pushed. However,
state 5 is located in a two-state cycle that is traversed once for each occurrence of the
symbol a.

Analysis performed for direct goto optimization reveals that the set of reduce tuples
for the parser contains the following three elements:

(State,, State ,, L -+ b, State,) ,
(State, , State,, L -+ a,L, State,),
(State,, State,, L -+ a,L, State7)

We note that the reduction by the rule L -+ b in state 6 is a candidate for direct
reduction optimization. However, the critical observation to make is the following. If
a reduction by the rule L -+ a, L in state 7 uncovers state number 5 on the stack,
control is immediately passed back to state 7 again. That is, the destination state and
reduction state in the reduction quadruple are the same. If there are no semantic

<>,b State 1 a?;;: State2

Reduce
L + b

Reduce :
L - + a , L

etc.

I.'igut-e 7. Parser- with right-7-ec2rrsie.e rules

526 R. N. HORSPOOL A N D M. WHITNEY

actions associated with a reduction by this rule, such a reduction has no more effect
than popping one element off the stack.

When parsing the list a,a,a,a,b, the parser will push state 1 followed by four
occurrences of state 5 onto the stack. Then the top four items will be popped off the
stack (as four reductions by rule number 2 occur) and control will be transferred to
state 3 . If state 5 is simply popped off the stack without having any other effect on
the parse and is not accessed in any state other than state 7 , it need not have been
pushed in the first place.

The minimal push optimization technique can be extended to eliminate the push of
state 5 in the example. We call this extension nght-recursive rule optimization.

The amended specification of when a state should be pushed onto the state stack in
a parser that implements minimal push optimization, direct goto optimization, and
right-recursive rule optimization is the following. A state Q need be pushed only if

(1) 9 R , S , D : R E Rules, S ,D E States,
(Q,D,R,S) E Reductions, and

(2) ? f R , S , D : R E Rules, S ,D E States,
(Q,D,R,S) E Reductions,
I{(q,d,R,S) I q,d E States, d f S or R has semantics}))1

The only change from before is that we ignore a reduce tuple in the second condition
if the destination state is identical to the reduction state and if the production rule has
no associated semantic actions.

Unit rule elimination
Grammars typically contain many production rules of the form A + X, where X

represents either a terminal or non-terminal symbol. Such a production is called a unit
rule.

LR parsers generated from grammars containing unit rules usually have many states
like state S , in the following scenario. Consider state S , which has an outgoing transition
labelled by symbol X, which can be either a terminal or non-terminal symbol. When
state S1 accepts X, control is passed to state S , where a reduction by rule A + X takes
place. This causes a goto action, corresponding to a transition away from state SI to
state S3 on symbol A, to take place.

If there are no semantic actions associated with the unit rule, there is no reason why
state S1 should not simply have a transition to S3 labelled by X. And the tran-ition to S2
labelled by X should be deleted. This transformation is known as unit-rule elimination or
chain rule elimination and is a standard optimization technique for LR parsers.'",
l 4 We mention it here because it is an optimization that eliminates many push and pop
operations from the parser. The effect on a directly executable parser is to reduce both
space and execution time requirements.

Although we have specifically implemented unit rule elimination in our generator
for directly executable parsers, branch-chaining optimization (described below) often
achieves the same result.

LOW-LEV EL OPT1 hl I ZATI ON S
Careful attention to the code patterns is necessary if we wish to maximize speed while
maintaining an acceptable size for the parser. A good peephole optimizer' would

EVEN FASTER LR PARSING 5 27

perform some of the code transformations described below. But, since these transform-
ations are important for obtaining good performance, they are explicitly implemented
by our generator for directly executable parsers.

Code sharing
Many states in the parser have identical or nearly identical sets of outgoing transitions.

For example, states 0, 3 , 4 and 5 of the parser shown in Figure 1 have identical T-
table actions. Very significant reductions in parser size can be achieved with little or
no penalty in terms of increased execution time if the code for such states is shared.

We have found it convenient to categorize state similarity into four different classes,
and associate different code transformations with each. Note that for the purposes of
finding similar states, we consider T-table actions and N-table actions independently.

The first category occurs when two states have identical sets of actions. The obvious
transformation in this case is to replace one copy of the code by a branch to the other
COPY *

The second category covers the case when the actions in one state form a subset of
the actions in another state. In this case, the obvious transformation is for the two
states to share the code for their common actions. For example, the state which has
more actions could contain just the code for the actions which are peculiar to it and
this code is followed by a branch to the other state. We note, however, that the code-
sharing transformation applied to a sequence of conditional tests may increase the
execution time if the sequences are subsequently converted into binary searches (see
below).

The third category occurs when two states have similar, but not identical, actions
and neither set of actions is a subset of the other. A small-scale example appears in
Figure 1 with states 2 and 6. Again, the obvious transformation is for both states to
contain code for the actions which they do not have in common followed by a branch
to some shared code. (The second category can be seen as a special case of the third
category.) In the case of states 2 and 6 in Figure 1, the benefit of them sharing code
is small. In practice, it is desirable to require that two states must have a minimum
number of actions in common before a code sharing transformation is applied.

The fourth category occurs when several (more than two) states have similar, but
not quite identical, actions. As a very small scale example, suppose that state S1
includes actions (A2, A3), which are performed when the input symbol is t l or t2,
respectively. Similarly, state S2 includes actions (A1 , A3), performed when the input
symbol is t l or t3, and state S3 includes actions {Al, A2}, performed when the input
symbol is t l or t2. Any two of these states can share code using the technique described
above, but a different strategy must be used if all three states are to share code
efficiently. This situation frequently arises with practical grammars, but on a larger
scale. For example, there are many states associated with recognition of expression
structure. They are differentiated only by the precedences of the expression operators
that have been recognized so far. These states accept similar, but not identical, sets of
terminal tokens and have similar actions associated with the tokens. Therefore, it is
worth while to perform a code transformation that allows the code to be shared. Our
solution is to group the common actions together and to test a vector element in each
state to determine if control should be passed to the combined action group. The code
for the small-scale example might have the form:

528 R. N . HORSPOOL AND M . W H I T N E Y

S1: if (bvectorl [token] == 1 1 goto G;
. . . other actions for state 1

S2: if (bvector2[tokenl == 1) goto G;
, . . other actions for state 2

S3: if (bvector3[token] == 1) goto G;
. . . other actions for state 3

G: switch(token) {
. . . code for actions A l , A2 and A3
1

The data storage required for the vectors and the execution time cost of performing
the indexed vector test make this transformation worth while only if a relatively large
number of each state's actions can be included in the group. In practice, the same
vector may be tested in several states, and this reduces the storage cost somewhat.

Conditional sequences

The T-table actions for each state normally require the current input token to be
compared against several possible values. Similarly, the N-table actions for each state
require comparisons of the non-terminal symbol that appeared on the left-hand side of
a reduced production rule against various possible values. ll'hen the number of possi-
bilities is small, say seven or fewer, a series of comparison tests, as used in the sample
code of Figure 3 , is reasonably efficient. However, when the number of possibilities is
larger, more efficient code should be used. (\Vith the C grammar that was used in our
experiments, one state has 30 possibilities for the nest terminal symbol and several
states allow 29 possibilities.)

As Pennello observed,i a faster approach is to organize the tests as a binary search.
.4n alternative method, suitable when the number of tests is large and the range of
possible values is reasonably compact, is to use a jump table, corresponding to the
usual implementation of a switch statement in C or a case statement in Pascal.
Depending on the number of possible values, our parser generator selects whichever
of these schemes appears to be most appropriate.

Given information about the dynamic behaviour of the parser, it would also be
possible to order the tests so as to minimize espected execution time. However, this
possibility is ignored in our current implementation of the parser generator.

Branch chaining

When the target of a branch statement is another branch statement, the first branch
can be retargeted to transfer control to the destination of the second. This particular
transformation is commonly included in the repertoire of peephole optiniizers, l 5 and
should therefore be performed by an optimizing compiler.

However, we stress the importance of the branch-chaining optimization because it
can have a similar effect to other, apparently more sophisticated optimizations, when

EVEN FASTER LR PARSING 529

applied to a directly executable parser. For example, consider the following grammar
for arithmetic expressions:

0. S + E
1. E + E + T

3. E + T
4. T + T * F
5. T + T I F
6. T + F
7. F + (E)
8. F + id

2. E + E - T

There are states in the parser for this grammar where the following sequence of unit
rule reductions can occur: F + id, T -+ F, E + T. These are unit reductions, as discussed
earlier. If there are no semantic actions associated with these unit rules, then after
direct goto optimization, the code for one of these states should be similar to the
following. (We assume, for sake of example, that this state happens to be numbered
7.)

S7: token = scan();
P7: push(7 1;

if (token == id) goto SR8;
. . . omitted code

. . . omitted code

. . . omitted code

SR3: goto P27;

SR6: goto SR3;

SR8: goto SR6;

If branch optimization is applied, the test in state 7 would be simplified to

if (token == id) goto P27;

This is similar to what one would expect if unit rule elimination optiniization had been
applied to the parse tables.

IhIPLEMENTATION A N D EXPERIMENTAL RESULTS

Structure of the parser generator

A generator for directly executable parsers has been implemented in four phases:

1. LALR(1) parse table generation.
2. Stack use optimizations and PM-code generation.
3 . PM-code peephole optimization.
4. PM-code to target language translation.

530 R . N . HORSPOOL AND M. WHITNEY

The first phase reads a grammar specification given in the same notation as supported
by y ~ c c . ~ Every construct of yacc except for the semantic stack (the stack whose
elements are accessed by ‘$$’ ‘$1’, . . . notation) and support for error recovery are
provided. The semantic stack is not supported because the minimal push optimization
causes positions in the state stack to lose their one-to-one correspondence with positions
in the semantic stack. The user can, of course, use explicitly declared stacks in the
semantic action code. The lack of support for error recovery may be a more serious
deficiency, depending on the application in which the parser will be used. A discussion
of how error recovery could be supported appears at the end of this paper.

The second phase of the parser generator reads the parse table into memory and
applies the optimizations described in third section of this paper. The implementation
does not assume that the tables are generated by an LALR(1) algorithm; thus it would
be relatively straightforward to substitute an SLR(1) or LR(1) generation algorithm
for the first phase. The output of the second phase is a directly executable parser,
described in an idealized and very compact notation that we call PM-code (short for
parser machine code). PM-code can be viewed as the assembly language for a hypotheti-
cal machine which has a state stack, a register named T which holds the last input
token and a register named L which holds a non-terminal symbol. The machine has
instructions for testing the T register, L register or the top of stack, for reading a new
token into the T register, for storing a value in the L register, pushing and popping
the state stack, and so on.

The third phase applies the optimizations described in fourth section of this paper.
Even though branch chain optimization is performed by many compilers (and thus
would be applied to the generated parser), we perform this optimization because it
reduces the volume of PM-code and because it makes code sharing optimizations easier
to apply. The output from the third phase is in the PM-code format, except that a
greater variety of instructions is used. For example, after this phase, the PM-code may
contain bit-vector tests, whereas none would have been present in the input.

The fourth phase is constructed as a small, simple, program so that retargeting to
different languages is relatively easy. We currently have two implementations. One
performs a simple translation from PM-code to the C language, the other translates to
SUN-3 assembly language. (The SUN-3 computer series use the Motorola 68020 and
68030 CPUs.) Comparing parsers generated by the two versions allows us to estimate
the extra overhead introduced by the use of C.

The C version of the translator generates C code as described in this paper. The
assembly language version attempts to generate the best possible code. It implements
the stack of states as a stack of labels, and uses the system stack for this purpose.
There are three benefits of using the system stack instead of a separate stack. The first
is that the CPU provides efficient instructions for pushing label addresses onto the
system stack, both ‘jsr’ and ‘pea’ can be used for this purpose on the MC68020. The
second benefit is that the stack size is limited only by the maximum stack size of the
Unix process. The third benefit is that stack overflow checks are implicitly performed
by the machine.

Experimental data

Grammars for the C and Pascal languages were used to generate directly executable
parsers, and timing experiments were performed on these parsers. Comparisons with

EVEN FASTER LR PARSING 53 1

parsers created by the yacc parser generator' were also performed, but it should be
realized that yacc was not designed with fast parsing in mind.

Two grammars for C were used. The first grammar was a slightly modified version
of a published gramrnar.l6 The minor changes to the grammar comprised, for the most
part, the inclusion of semantic actions to process declarations of type identifiers. The
C language separates the expression operators into 15 different precedence levels and
the first grammar uses a different non-terminal symbol to represent each precedence
level. The second C grammar is based on the first, except that the precedence levels
of the operators are not defined by the grammar rules. Instead, precedence declarations
are supplied to the parser generator and are used by the algorithm that constructs the
LR(0) states. The second grammar eliminates almost all unit rule reductions that occur
when expressions are parsed. Parsers based on the second grammar would usually
execute faster than parsers created for the first grammar. The two grammars are named
C and Clprec, below.

Similarly, two Pascal grammars were used. Again, the first grammar is similar to
one that has been published." (Some minor manipulation was required to expand
extended BNF notation into production rules suitable for use with a LR parser.) The
first grammar embodied the operator precedence levels in the production rules. For
comparison purposes, a second grammar where the precedence levels are declared
separately was also created. The two grammars are named Pasc and Pusclprec, below.

The overall characteristics of the four grammars and of their LR parse tables are
summarized in Table I . The fifth line in the table shows how many LR(0) states
remain after shift-reduce optimization is applied. The sixth line shows the number of
states which need to be stacked after the minimal-push and direct-goto optimizations
described in this paper have been performed. The last line in the table shows how
many states needed to be duplicated to eliminate pop count conflicts associated with
the minimal-push optimization technique.

For each of the four grammars, three parsers were generated. Our own parser
generator was used to create two of the parsers-one created as a C program and the
other as an assembly language program. The third parser was created by jm-c ."

The C source code file used for timing the three C parsers comprised 1395 lines
containing 38,561 characters. (The file was the source code for the suntools program
included with version 3.5 of the SunOS UNIX operating system.) But some of these
lines were directives to the C preprocessor that caused several thousand more lines of
C code to be included. The file size after preprocessing was 10,193 lines, containing
122,880 characters or 26,738 lexical elements. However, a large proportion of the lines

Table I . Characteristics of the test grammars

(y C'lprec Pa., c f'nsr lpiec
_______---__ _ _ _ ~ _ _

Rules 238 214 172 167
Non-terminals 93 69 71 66
Terminals 84 84 61 61
LR(0) states 345 342 305 312
LR(0) states (after SR optimization) 172 216 163 181
Push states 74 96 79 91
Pop count coriflicts 9 10 0 0

532 R. N . HORSPOOL A N D M . WHITNEY

in the output from the preprocessor were empty (because they were empty in the
original source files or contained only comments or contained preprocessor directives
in the original files). If empty lines and lines containing file-name/line-number directives
(used by the C compiler to correlate error messages with positions in the original input
files) are stripped from the file, the size is reduced to 3169 lines or 105,197 characters.
Since it is unclear which file size should be used when computing the speed of a C
parser, we avoid stressing speeds measured in units of source lines or source characters
per minute.

T h e Pascal source file used for timing the Pascal parsers comprised 4462 lines
containing 100,684 characters or 18,526 lexical elements. (This large Pascal program
is the source code for a lexical analyser generator called nf?i-d7~z~-k.) Since standard
Pascal" does not have a preprocessor, these figures are unambiguous. Stripping all
comments and blank lines from the file \vould reduce its size t o 3934 lines or 89,241
characters.

T h e sizes and the execution times for each of the 12 parsers are given in Table 11.
T h e execution times do not include lexical analysis (or preprocessing time for the C
source files). However, the C parsing times do include some overhead entailed in
recognizing declarations of type identifiers and entering these identifiers into a table
that is accessed by the lexical anal!ser. Other than the code needed to handle type
identifier declarations, no semantic actions kvere perfornied. Each time given in the
table is an average over ten measurements. If the parsing rates are converted into lines
per minute, the figures for the directly executable parsers range from 800,000 lines per
minute to over 2 million lines per minute, depending on how the file size is determined.

T h e directly executable parsers are five to eight times faster than the equivalent
parsers generated by ~ a c l - , " at the expense of a modest increase in memory require-
ments. Unfortunately, it is not possible to compare the parsing speeds with those
observed by Pennello.' (He used a different grammar, gave his timings for a different
CPU and gave no comparisons with parsers generated by JWCC.)

How effective were the different optimizations in reducing the space and time
requirements of the parsers? Table I11 shows the effect of disabling the minimal push
and direct goto optimizations on the parser generated for grammar C. Right-recursion
optimization is not included in the table because our saniple grammars contain very

Table 11. Sizes and speeds (i f the parsers

_ _ . ~ ~ ~- ~~ ~

C' parser
Source code size (lines)
Object code size (bytes)
Execution time (seconds)

Source code size (lines)
Object code size (bytes)
Execution time (seconds)

Source code size (lines)
Object code size (bytes)
Execution time (seconds)

.-lsser~~bler pawer

Ibcc parser-

('

2614
7688
0.44

60 1
5832
2.95

1872
8400
0.28

27.39
8240
0.23

632
6536
1.54

1173
6032
0.13

1848
5408
0- 13

417
4184
0.91

1305
6928
0.13

2171
6248
0.14

500
4840
0.87

EVEN FASTER L R PARSING 533

Table 111. Effect of stack optimizations

Optimizations applied

Push states
Size of parser (lines)
Object code size (bytes)
Execution time (seconds)

168 168 98 74
2004 1937 1805 1704
9472 9264 8616 8256
0-66 0.66 0.62 0.54

few right-recursive production rules. All the simpler optimizations were still performed.
The importance of the simpler optimizations is hard to quantify because some of these
optimizations may or may not be automatically performed when the parser is assembled
or compiled. Without question, they are important for reducing the storage require-
ments to a size comparable to that of a table-driven parser. As an illustration of their
importance, we generated an assembly language parser for the C grammar, above,
where execution of the third phase of the parser generator was suppressed. This caused
every sequence of conditional tests to be implemented by a jump table and no code-
sharing optimizations were performed. The size of the generated parser was 13,291
lines of SUN-3 assembler source code, which assembled into 28,144 bytes of object
code-more than three times larger than the optimized parser. The execution speed
was almost identical to that observed for the optimized assembly language parser
generated for the same grammar. That is, the average time needed to parse the sample
file was 0.44 seconds. We can conclude from this that the optimizations performed in
the third phase of the parser generator are neutral in their effect on execution speed.

is, question which is sure to arise is 'How much longer does it take to generate a
directly executable parser that to generate a table-driven parser?'. Here is a partial
answer to the question. The time required by our parser generator when processing
the C grammar is 27.3 CPU seconds on a SUN-3/280 system whereas the corresponding
time required by the yncc tool on the same computer is 15.4 CPU seconds. For the
smaller Pascal grammar, there is much less difference. Our parser generator requires
6.7 CPU seconds and yacc requires 5.3 CPU seconds.

SUMMARY AND FURTHER WORK

We have described three different optimization techniques for directly executable
parsers which simultaneously increase their speed while decreasing their storage require-
ments. When used in conjunction with other, simpler, storage optimizations, the
resulting parsers can recognize their input at an incredibly fast rate. The parsers are
five to eight times faster than the equivalent table-driven parsers generated by yucc,
while requiring only a modest amount of extra memory.

A possible appliction area for high-speed parsing is in code generation. Some code
generation methodsl8, ") use a parser to perform pattern matching against intermediate
code. Typically, each pattern represents a machine instruction of the target computer
that is emitted when the pattern is recognized. However, a standard parser is not quite
powerful enough to perform the job. It is necessary to attach semantic predicates to

534 R . N . HORSPOOL AND M . WHITNEY

some production rules that have the effect of disallowing use of the rule unless the
predicate evaluates to true. A generator of directly executable parsers would need to
be extended to provide support for semantic predicates. A simple technique to provide
such support for the yacc parser generator has been described'" and there is no reason
why similar approach should not be used with directly executable parsers.

We have definitely not reached the ultimate in parsing speed. Our directly executable
parsers simply represent a reasonable compromise between storage and time efficiency.
It is possible to generate a parser with more states that performs fewer rule reductions.
For example, the grammar could be preprocessed by substituting the right-hand sides
of productions for occurrences of the left-hand sides. An alternative approach with a
similar effect is to unroll cycles in the LR parser by duplicating states. If carried to
its ultimate conclusion, the parser would approximate a (very large) finite state automa-
ton. Such a parser would rarely need to push or pop the stack.

There are at least two possibilities for improving the parsing speed without signifi-
cantly increasing the storage cost. One approach would be to optimize the order in
which equality tests on the current input symbol are performed. The tests should be
ordered according to the actual frequencies with which the symbols are encountered
in the various states of the LR parser. However, some preliminary experiments indicate
that the effect on parsing speed is not very large. A second way (suggested by one of
the referees) in which parsing speed might be increased is to borrow an idea from
Reference 21. After a rule reduction, only a subset of the non-terminal transitions used
in the goto action are possible. LVith some analysis of the LR items that generate each
state, it should be possible to split the non-terminal transitions into the appropriate
subsets, so that the number of tests needed to find the correct transition is minimized.
On the other hand, the splitting process is likely to interfere with code sharing
optimizations and lead to an increase in total memory requirements.

The current implementation of our parser generator provides no support for error
recovery. In an interactive environment where the compiler invokes a source editor at
the position of the first syntax error, no automatic recovery scheme is necessary. Nor
would error recovery be needed if the parser is used in the code generation phase of a
compiler. However, if the parser generator is to become useful in other situations,
some recovery scheme should be implemented. Pennello observed that a stack of
standard LR(0) state numbers can be re-created and with a table that contains the
standard LR parsing actions, the usual LR recovery techniques can be applied. The
same observation is true of our parsers too, although a little more computat' m would
be needed to re-create the state stack (due to our minimal push optimization technique).
We are investigating the feasibility of including Rohrich's recovery method" into the
directly executable parsers without incurring a large storage cost for extra tables. The
important observation to make is that two consecutive items on the stack of the directly
executable parser define a path through the recognizer's states. From the path through
the parser's states to the state in which a syntax error is detected, it is possible to
construct the minimum cost continuation for the error state. If the parser and the
lexical analyser interact appropriately, it would be possible to insert tokens from the
continuation sequence into the input stream, and thus implement Rohrich's recovery
scheme.

EVEN FASTER LR PARSING 535

ACKNOWLEDGEMENTS

Some valuable suggestions were received from the two referees of this paper. Financial
support from the Natural Sciences and Engineering Research Council of Canada is
gratefully acknowledged.

REFERENCES

1. W. M. Waite and L. R. Carter, ‘The cost of a generated parser’, Software-Practice andkkpeiience,

2. C. N. Fischer and R. J . LeBlanc Jr. , Ci-ufting a Conrpzler, Benjamin/Cummings, Menlo Park, Calif.,

3. P. Dencker, I(. Durre and J . Heuft, ‘Optimization of parser tables for portable compilers’, .4CV

4. J. Grosch, ‘LALR-a generator for efficient parsers’, Tech. Report 10, GMD, University of Karlsruhe,

5. J . Grosch, ‘Generators for high-speed front ends’, Tech. Report 11, GMD, University of Karlsruhe,

15, (3), 221-237 (1985).

1988.

Trans. Prog. Lung. and Systems, 6 , (4), 546572 (1984).

October 1988.

September 1988.
6. S. ‘C. Johnson, ‘YACC-yet another compiler compiler’, “.VIA- Ptvgrarniizer’s .IIarzual, 7th Edition,

2B, 1979.
7. T. J . Pennello, ‘Very fast LR parsing’, Pmc. 1986 Syniposiuin on C‘ompiler (‘onstm~Ion, =1(Pl

8. A. J . Demers, ‘Generalized left corner parsing’, Proc. Iq’ourfh .4nnua[A4(’M Syinposiuiii on PtInciples

9. R. W. Gray, ‘Au,omatic error recovery in a fast parser’, Pivc. 198i Suwrnrer- C7SE.VLY (’onference,

10. N. P. Chapman, LH Parsing: Theof? and Practice, Cambridge University Press, Cambridge, U ,K. ,

11. M. J. Whitney, ‘Optimization of directly executable LR parsers’, ill.&-. Thesis, Dept. of Computer

12. M. J . Whitney and R. N . Horspool, ‘Extremely rapid LR parsing’, Proc. Ubihshop oil

13. D. Pager, ‘Eliminating unit productions from LR parsers’, Actu Infoivzatica, 9, 31-59 (1979).
14. L. Schmitz, ‘On the correct elimination of chain productions from LR parsers’, I n (. J . C’otirputer

15. J . W. Davidson and C. W. Fraser, ‘The design and application of a retargetable peephole optimizer’,

16. S. P. Harbison and G . L. Steele Jr . , c’: A Refermce Manual, Prentice-Hall, Englewood Cliffs, N.J.,

17. D. Cooper, Standard Pascal: Cser Reference ~llatzual, Norton, New York, 1983.
18. R. S. Glanville and S. L. Graham, ‘A new method for compiler code generation’, Piwc. I‘$h .4nnud

AChl Symposiunz on Principles of Programming Languages, 1978, pp. 23 1-240.
19. M. Ganapathi and C. N. Fischer, ‘Affix grammar-driven code generation’, A(3J Tt-am, h o g . Long.

aird Systems, 4, (7), 560-599 (1985).
20. M. Ganapathi, ‘Semantic predicates in parser generators’, (bnzput. Lang., 14, (l) , 25-33 (1989).
21. G. H. Roberts, ‘Recursive ascent: an LR analog to recursive descent’, A(3I SIGPL-LV .Votices, 23,

22. J . Rohrich, ‘Methods for the automatic construction of error correcting parsers’, Artu It?fornzczticu,

SIGPLAV *Votices, 21, (7), 145-151 (1986).

of Pmgramtning Languages, 17C-182 (1977).

337-346 (1987).

1987.

Science, University of Victoria, 1988.

Compiler-Compiler atid High-speed C‘onzpilatioiz, Berlin, G .D .R., 1988, pp. 248-257.

Mathematics, 15, 99-1 16 (1984).

ACM Trans. Prog. Lung. and Systems 2, (Z), 191-202 (1980).

1984.

(8), 23-29 (1988).

13, (2), 115-139 (1980).

