
Toward immediate feedback in research on virtual machines

Erick Lavoie, Marc Feeley, Bruno Dufour
Université de Montréal

{lavoeric, feeley, dufour}@iro.umontreal.ca

Abstract
This is the text of the abstract.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, optimization, code generation,
run-time environments

General Terms Algorithms, Performance, Design, Languages

Keywords JavaScript, virtual machine, compiler, self-hosted, op-
timization, implementation, bootstrap

1. Introduction
The time and efforts required from researchers to design and eval-
uate implementation strategies for programming languages are de-
termining factors in the quantity and the quality of the results ob-
tained by the whole community. Results that facilitate new vir-
tual machines (VM) construction or modification of existing ones
amplify every researcher efforts involved with programming lan-
guage’s implementations.

The feedback loop between the birth of an idea and its empiri-
cal evaluation is dominated by the implementation effort required
to test it. When building a new VM, most of the effort is spent reim-
plementing functionalities with known techniques. When modify-
ing an existing VM most of the effort is spent overcoming early-
bound assumptions in the design. The implementation effort delays
the feedback that can be obtained on an idea.

In our view, a research VM should provide immediate feedback
on the impact of design decisions on its properties, such as per-
formance, security and extensibility. It should do so with minimal
efforts on the part of the researcher. We believe that it is a technical
problem that can be solved through careful design.

We posit that the combination of the following properties can
facilitate exploration and significantly contribute to the immediacy
of feedback on design decisions:

• Openness. Any part of the system should be modifiable by user-
defined code with as little constraints as possible on what can
be expressed.

• Extensibility. New user-defined object representations should
be supported with no modifications to the core of the system.
New compilers should be supported by reusing parts of existing
compilers or by completely replacing them without modifica-
tions to the object model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH 2012 October 19-26, 2012, Tucson, Arizona, USA
Copyright c© 2012 ACM [to be supplied]. . . $10.00

• Dynamism. User modifications should be supported at runtime.

• Performance. The system should be fast enough to provide
instant feedback on user modifications.

This paper details our first attempt at applying those principles
in building a research virtual machine for an existing language. We
chose to use JavaScript [4] as a source language, first because of
the dire need for new implementation techniques for this particular
language and second, to guarantee the applicability of our results to
mainstream languages. This is our second attempt at boostrapping
a JS VM and we constrast our current approach to our previous
one [1].

We first describe our current design and implementation, Pho-
ton. We discuss our bootstrap strategy. We perform an empirical
evaluation by performing different tasks and doing a quantitative
analysis both of the complexity and performance of the system. We
finally compare with the current litterature and identify areas for
future improvement.

1.1 Contribution

The main contribution of this paper is in the design, implementation
and evaluation of a working self-hosted JS VM exhibiting a higher
level of Openness, Extensibility and Dynamism than other JS VMs
we know of. A complementary contribution is on the choice and
experience report on our bootstrap process. A final contribution is
in the empirical evaluation in using a domain-specific language,
OMeta [10] to write a JS to native code compiler.

Although we do not claim that Photon fully achieves the four
aforementioned properties at the time of writing this article, we
think that it achieves enough to clearly show the benefits of aiming
for those properties in the first place.

2. Design
Two insights lead to understanding how the current design achieves
the first three properties. Those two insights were key behind the
invention of both LISP [7] and SmallTalk [5]. They are also funda-
mental to recent work on open, extensible object models [9] from
which our design draws heavily.

The first one is late-binding. Late-binding is the act of deferring
as long as possible the choice of a concrete strategy to implement
an expected behavior. The latest time at which a given concrete
strategy might be chosen is just before performing the expected
behavior. By opposition, early-binding means choosing a concrete
strategy earlier, usually at compile time. Late-binding is what en-
ables runtime modifications to the system.

The second one is uniformity. By organizing the system around
a single principle, as in ”Everything is a list” or ”Everything is an
object”, one can modify every part of the system in the same way. It
reduces the possibilities of interference between different elements
of the design.

Late-binding and uniformity have traditionally been associated
with poor performance. However, work on SELF [3] has shown that
performance could be brought within a factor of 3 from optimized
C code on some benchmarks, with the right optimizations. As the
JS object model is inspired from SELF, we expect those techniques
to apply to JS as well. Usage of late-binding and uniformity in
the design should not compromise immediate feedback because of
performance issues.

Before we delve into the current design of Photon, we first
briefly introduce JS, we discuss why Photon is meta-circular and
justify our unified environment execution approach for user and
compiler code. The design explanation focuses on the object model
since it is the enabler of the first three properties in the system.

2.1 JavaScript

JavaScript is a dynamic language, imperative but with a strong
functional component, and a prototype-based object system similar
to that of SELF.

A JS object contains a set of properties (a.k.a. fields in other
OO languages), and a link to a parent object, known as the object’s
prototype. Properties are accessed with the notation obj.prop, or
equivalently obj[”prop”]. This allows objects to be treated as dic-
tionaries whose keys are strings, or as one dimensional arrays (a
numeric index is automatically converted to a string). When fetch-
ing a property that is not contained in the object, the property is
searched in the object’s prototype recursively. When storing a prop-
erty that is not found in the object, the property is added to the ob-
ject, even if it exists in the objects prototype chain. Properties can
also be removed from an object using the delete operator. JS treats
global variables, including the top-level functions, as properties of
the global object, which is a normal JS object.

Anonymous functions and nested functions are supported by JS.
Function objects are closures which capture the variables of the en-
closing functions. Common higher-order functions are predefined.
For example, the map, forEach and filter functions allow processing
the elements of an array of data using closures, similarly to other
functional languages. All functions accept any number of actual
parameters. The actual parameters are passed in an array, which
is accessible as the arguments local variable. The formal parame-
ters in the function declaration are nothing more than aliases to the
corresponding elements at the beginning of the array. Formal pa-
rameters with no corresponding element in the array are bound to a
specific undefined value.

JS also has reflective capabilities (enumerating the properties
of an object, testing the existence of a property, etc) and dynamic
code execution (eval of a string of JS code). The next version of
the standard is expected to add proper tail calls, rest parameters,
block-scoped variables, modules, and many other features.

2.2 Meta-Circularity

Using the language to compile for implementing a VM provides
numerous advantages such as code reuse, runtime sharing and
elimination of conflictual interactions between the client and host
runtime systems. The most important advantage in our case is
the possibility of intercession on the system behavior by simply
exposing the inner components of the VM.

However, this raises meta-stability issues because infinite recur-
sion can be introduced by inadvertence. While the system is in its
early phases, we think it is advantageous to open the system for
easy experiments because it allows a faster evolution, even at the
cost of meta-stability issues. Those can be mitigated by restricting
our coding style until a proper meta-object prototocol [6] is de-
signed.

2.3 Unified Environment

Our previous work on the Tachyon self-hosting VM for JS [1] used
separate environments for the compiler and user code. Although it
contributes to the security of the implementation, it complexifies
both serialization of the system and intercession on the compiler.
Photon uses a unified environment, where all the VM internals are
exposed as JS objects on the global object, making serialization and
intercession simpler.

2.4 Object Model

The goal of the Photon object model is to facilitate intercession on
the VM behavior rather than be fully compliant to the ECMAScript
standard. The deviations introduced should be invisible to programs
using only common reflexion mecanisms (typeof, instanceof, for
in iteration).

The next sections present the base JS object model and constrast
it with the Photon object model. We discuss only the value types
necessary for self-hosting.

2.4.1 JS Object Model

The JS object model has two regimes. Values in the language are
either primitives or objects. Primitives comprise booleans, strings,
numbers, null and undefined values. Every other value is an
Object, including object versions of primitives.

The behavior of primitive values is defined by the implementa-
tion and is opaque. The behavior of object values is partially open.
Prototypes for the base objects are exposed on the prototype at-
tributes of their corresponding constructor function. Standard li-
brary functions are modifiable attributes of these prototypes. How-
ever, basic operations on objects such as property access and assig-
nation are fixed. The next version of the ECMAScript standard in-
troduces proxy objects to redefine the behavior of basic operations.
They cannot the behavior of operations that do not go through them.

Some value types are special. The arguments object does not
have a specific constructor function. It prevents addition of meth-
ods for its instances. Although its values are accessed through nu-
merical properties and it has a length property, it does not support
the array methods. It inherits from the root object.

The three categories of values and their protyping relationships
are illustrated at figure 1.

Object.prototype

Objects Primitives

stringundefined

nullboolean

arguments

Special

Prototype

Legend

number

Number.prototype

Boolean.prototype

Array.prototype

String.prototype

Function.prototype

Figure 1. JS Object Model

2.4.2 Photon Object Model

The Photon object model is heavily inspired from the open exten-
sible object model proposed by Piumarta and Warth [9]. The most
interesting feature of that object model is its recursive definition.
Components of the object model are objects whose behavior is af-
fected by the object model. This provides encapsulation of the im-
plementation strategy, remove external dependencies and facilitate
extensibility.

Their object model defines 3 types of objects, object, symbol
and vtable. Everything is an object. Behavior is invoked through
message sending. Symbols are canonical values used to represent
messages. Vtables define the behavior of objects by associating
symbols with method implementations. Every object has an associ-
ated vtable. Since vtables are also objects, a vtable’s vtable de-
fines the behavior of vtables. To close the recursion, this last vtable
is its own vtable.

Photon object model is similar except that method implementa-
tions are stored on objects. It unifies meta-level and JS-level meth-
ods. JS functions can redefine the object model behavior. Every
component of the object model is a JS object, including the equiv-
alent of a vtable, which we call map in the tradition of SELF’s
terminology. A map defines the layout of an object instead of its be-
havior. Maps are also objects and their behavior is defined by a pro-
totypical map. The layout of a map is defined by its map. To close the
recursion, the layout of all maps with no property is defined by a re-
cursive map and the prototypical map is its own map. This illustrated
at figure 2. The layout description of maps is immutable. Adding or
removing properties from an object replaces its map. Special care
must be done when adding or removing properties from recursive
maps to maintain the recursive property.

Prototype

Legend

Map

object
object's

map
object map's

map

Prototypical map

Figure 2. Photon Meta Object Model

To unify the intercession process, every value in Photon has a
corresponding prototypical object, even primitive values and im-
plementation objects. The prototypical object of null, undefined,
true and false and numbers is primitive. The arguments object
has a corresponding prototypical object, which is a child of the
array prototypical object. All strings are symbols and inherit from
symbol.

The last three prototypes are reifications of implementation
objects. cwrapper is the prototype for all wrappers to c functions.
cell is the prototype for all cell values used for implementing
closures and aliasing of arguments object values to local variables.
frame is a special object used for implementing the apply method
for functions. The prototypical inheritance is illustrated at figure 3.

object

array symbol

framearguments cwrapper

function cell

Prototype

Legend

map primitive

Figure 3. Photon Inheritance Hierarchy

Figure 4 illustrates the core of the object model that allows
message sending. It includes an example foo object with a "foo"

property whose value is the bar function. Prototypical objects from
the inheritance diagram in figure 3 are greyed. Object values are
represented in squares growing up. Associations between symbols

and offsets in maps are represented under the map objects.

map's
map

Prototypical map

object's
map

symbol's
map

object

Prototype

Legend

Map

Reference

bar

"foo"

foo object's
map

0

{"foo":bar}

function symbol

bar's
map

"foo"'s
map

function's
map

Figure 4. Photon Core Object Model

The only missing piece is the message sending algorithm. The
algorithm is identical to the original suggested by Piumarta and
Warth. We present it in pseudo-JS at figure 5. === performs an iden-
tity equality. objMap(rcv).lookup(rcv,msg) sends the lookup
message to the rcv’s map. It allows redefinition of the lookup
method but needs a base case to end the recursion which is per-
formed by the early-bound mapLookup call. The following con-
structions are not available in ECMAScript 5 but they are used to
clarify the presentation. Every variable prefixed with an underscore
means that its value is bound at compile-time. obj* are accessor
functions to the underlying object representation. They are concep-
tually inlined at the call site. The send function is inlined at every
call site. The ..args means the rest of the arguments.1 2

This object model is uniform. Everything is a JS object and
behavior is invoked through a message send. This object model is
also late-bound. The semantic of message sending illustrate that the
behavior invoked is bound just before its execution.

1 A safe implementation should perform a check that the value found is a
function before the call.
2 Sending the doesNotUnderstand message to the current object when no
method has been found instead of throwing an exception would bring the
SmallTalk message sending behavior to Photon.

f u n c t i o n b i n d (rcv , msg) {
i f (i s P r i m i t i v e (r cv)) {

r e t u r n p r i m i t i v e [msg] ;
} e l s e i f (msg === ” lookup ” &&

objMap (r cv) === rcv) {
r e t u r n mapLookup (map , msg) ;

}

va r o f f s e t = u n d e f i n e d ;
va r r cv = r cv ;

wh i l e (r cv !== n u l l) {
o f f s e t = objMap (r cv) . lookup (rcv , msg) ;
i f (o f f s e t !== u n d e f i n e d) {

r e t u r n ob jVa l u e (rcv , o f f s e t) ;
}
r cv = o b j P r o t o (r cv) ;

}

i f (o f f s e t === u n d e f i n e d)
throw ” e r r o r ” ;

} ;

i n l i n e send (rcv , msg , . . a r g s) {
r e t u r n b i n d (rcv , msg) (rcv , . . a r g s) ;

}
Figure 5. Message sending algorithm

2.4.3 Compiling JS to the Object Model

Compilation of JS now essentially consists in mapping JS operators
to message sends. For example, o.p compiles to o. get ("p")

and o.p = v compiles to o. set ("p",v). Choosing unused
names for JS operations keeps meta-level operations at the user
level to facilitate intercession. 3

2.5 Discussion

By virtue of being meta-circular and by exposing the compiler
and prototype objects on the global object, this design is fully
open. Any element that determine the behavior of the system is
modifiable by user code.

This design is also extensible. New object representations can
be defined using existing objects as prototypes to reuse behavior.
The encapsulation provided by the recursive definition of the object
model makes remplacement of the existing compiler with a new
one easier, as almost no assumption about the layout of objects are
made. In fact, assumptions about the layout of objects can be seen
as compile-time binding and inlining of object methods.

Not everything is late-bound in the current design, therefore it
is not fully dynamic. The message sending primitive, function call
protocol, type information to distinguish primitives from objects,
the header layout and the position of property values in the ob-
ject representation can be changed at runtime only at the cost of
recompilation of all the existing code. The deeper issue here is
that every early-bound element requires a recompilation of existing
code when that element changes. A safe incremental recompilation
technique supporting those changes could provide the illusion of
dynamicity while still providing performance. To the best of our
knowledge the design of such a system is still an open question.

3 Should the need arise to prevent interference of user-level properties with
meta-level properties, different symbol tables can be used.

However, the choice of early-binding some operations can in-
tentionally be made. We did it in this first implementation for con-
trol flow, arithmetic, logical and relational primitives as well as
mapping the environment to locations on the stack or on closures.
In the context of research on programming language implementa-
tion for existing languages this seems reasonable since, as far as
we know, all the mainstream languages do not allow such changes.
The need might arise in the context of programming language de-
sign as one might want to experiment easily with such changes.
Recent work by Piumarta [8] addresses some of these issues.

Not being entirely compliant to ECMAScript 5 might be prob-
lematic. The distribution of language features used by real world
applications and websites is still an open question. Answering that
question would allow us to provide the proportion of programs that
could run correctly on Photon in the presence of an object model
that is not fully compliant to the standard. In the absence of em-
pirical data, we hypothesise that this proportion is high enough for
Photon to be a useful tool for empirical research.

3. Implementation
The implementation choices were made first and foremost to min-
imize the effort, at the expense of memory usage and execution
performance. A number of simplifications were made.

Fixed-precision integer numbers. The ECMAScript standard
specifies that all numbers use a double-precision floating-point
representation. Some implementation internally use an immediate
integer representation when possible to speed up operations. We
made the same choice but we do not provide a fallback to a floating-
point representation.

Inline case for fixnum and boolean operations only. Arithmetic,
logical and relational operations perform implicit conversions of
value types when the expected types are not appropriate. To the
exception of string concatenation (+) and string comparison with
relational operators (<, <=, > and >=), implicit conversions are not
supported.

C-compatible strings, functions and calling conventions. To fa-
cilitate reuse and integration with C code, strings can be manipu-
lated with the c string library, functions are direct pointers to C-
compatible code and the 32-bit C calling conventions are followed.

Stack-based execution. Register allocation was an important
source of bugs and compilation time in our work on Tachyon [1]. It
notably complexified the code generation phase and made changes
to the intermediate representation harder. We decided to map every
local variable to a location on the stack for the duration of the
function and return the result of an expression evaluation in the EAX

register. This removes the need for register allocation and makes
code generation compositional, i.e. code generated for a given node
does not depend on code generated for previous nodes.

Tree-based intermediate representation. A single intermediate
representation is used to avoid conversion between representations.
It also makes code generation trivial for a stack-based execution
model.

x86 32-bit support only. Calling conventions and instruction
encoding are different between the 32-bit and 64-bit versions of
x86. We favored the 32-bit version because it integrated nicely with
the stack-based execution model.

Single notation for all compiler phases. The JS version of
OMeta was used to express all compiler phases. Built-in support
for pattern-matching and ease of grammar extensions made proto-
typing easier.

Dynamic assembler. Serialization of dynamically generated
code provides the same advantage as statically generated code.
No support for static generation is made.

Executable heap. The whole heap is executable to unify mem-
ory management of objects and functions.

We present some key decisions behind our implementation to
obtain a working system from which a better implementation can
be developped. The next sections explain our current level of JS
support, the AST representation chosen, the JS extensions required
for meta-circularity, the implementation of the object model and a
quick overview of the implementation of the compiler.

3.1 JS support

The two most complex parts of the implementation are the OMeta
runtime and the dynamic assembler. They determined the level of
JS support required. From the ECMAScript 5 standard, Photon
currently support:

• Fixnum and boolean arithmetic, logical and relational operators
(except == and !=, which perform implicit conversions)

• Overloaded meaning for + (string concatenation) and <, <=, >,
>= (string comparison)

• Control-Flow statements, including try-catch

• Introspection with ’for in’

• apply() and call()

• closures

• typeof, instanceof and new operators

• Array and String standard library

• arguments object

• variadic functions

• eval (strict)

It lacks support for getter and setters, object property flags,
finally, with, implicit conversion for arithmetic, logical and re-
lational operators. Current JS support allows running some bench-
marks from the standard suites. Those benchmarks are listed in sec-
tion 7.2.1.

3.2 AST Representation

Each abstract syntax tree node is represented as an array whose
first value is a string representing the type of the node. The rest
of the values are either child nodes or parameters depending on
the node type. This representation was chosen because it facilitates
generation of JS code inside the compiler and OMeta/JS provides
native support for pattern-matching on arrays. The JS code for the
Fibonacci function is given at figure 6 and the corresponding AST
is given at figure 7.

Information about analysis results are stored on objects added to
the nodes during compilation. They are omitted here for simplicity.

f unc t i on f i b (n)
{

i f (n < 2) re turn n ;
e l s e

re turn f i b (n−1) + f i b (n−2);
}

Figure 6. Fibonacci function

3.3 JS extensions

A meta-circular VM requires generation of executable code as well
as direct manipulation of memory’s content. For security reasons,
the ECMAScript standard prevents both. Therefore, extensions to
JS are needed. Two key insights led to the current implementation.

First, every functionality that can be accessed through an object
method can be implemented in C. By making the interface to C

[” va r ” , ” f i b ” , [” f u n c t i o n ” , [”n”] ,
[” beg in ” ,

[” i f ” , [” b inop ” , ”<” ,
[” g e t ” , ”n”] ,
[” number ” , 2]] ,

[” r e t u r n ” , [” g e t ” , ”n”]] ,
[” r e t u r n ” ,

[” b inop ” , ”+” ,
[” c a l l ” , [” g e t ” , ” f i b ”] ,

[” b inop ” , ”−” ,
[” g e t ” , ”n”] ,
[” number ” , 1]]]

[” c a l l ” , [” g e t ” , ” f i b ”] ,
[” b inop ” , ”−” ,

[” g e t ” , ”n”] ,
[” number ” , 2]]]]]]]]] ;

Figure 7. AST for Fibonacci function

code trivial, it becomes easy to use functionalities offered by the
C language in implementing the VM. Those functionalities do not
require a syntactic extension to JS or special compiler support.

Second, the only necessary syntactic extension is the ability to
directly specify AST nodes that might not have a syntactic repre-
sentation. By introducing new node types, one can make semantic
extensions without any corresponding syntax. The syntax chosen
and the corresponding semantic are the following:

@{<string>}@ (expr): eval(<string>) in compiler context, should
return valid AST node

The following example taken from Photon source code shows how
inline assembly code can be used through the @{...}@ notation by
using a ’code’ AST node to test if an expression is a fixnum:

@{ [” code ” ,
[op (”mov” , EAX , ECX) ,

op (” and ” , $ (1) , ECX) ,
op (”mov” , $ (TRUE) , EAX) ,
op (”mov” , $ (FALSE) , ECX) ,
op (” cmovz” , ECX , EAX)]] }@;

In this example, op and $ are regular function calls while EAX,
ECX, TRUE and FALSE are global variables. The op call returns the

encoded assembly instruction, the $ returns an immediate value
object, EAX and ECX are x86 register objects and TRUE and
FALSE are constants.

While sufficient for all semantic extensions, the aforementioned
syntax is not convenient for common occuring patterns. Some ex-
tensions introduced are:

• o[@<index>]: unsafe access to <index> slot of object ’o’.
<index> can be positive or negative. (Section 3.4).

• inline <name>(<params>) { return <expr> }: inline <expr>

at call site during compilation. Replace occurences of <params>
in <expr> by their corresponding AST nodes.

Combining the inline syntax with the @{...}@ syntax yields
a powerful way to define compile time patterns of assembly code.
Figure 8 shows their usage, as if they were function calls.

3.4 Object Model Implementation

Implementing the object model presented at section 2 requires
deciding a representation for objects in memory and implementing
object behavior.

Photon uses two kinds of references. Reference to numbers
always use 1 for the least significant bit. The rest of the bits are

i n l i n e r e f i s f i x n u m (r)
{

re turn @{ [” beg in ” ,
[” g e t ” , ” r ”] ,
[” code ” ,

[op (”mov” , EAX , ECX) ,
op (” and ” , $ (1) , ECX) ,
op (”mov” , $ (TRUE) , EAX) ,
op (”mov” , $ (FALSE) , ECX) ,
op (” cmovz” , ECX , EAX)]]

]}@;
}

i f (r e f i s f i x n u m (r cv))
{

. . .
}

Figure 8. Inline example for testing for fixnum values

used to represent a signed integer. Reference to objects always use
0 for the least significant bit. This is achieved by aligning objects
to even addresses. Although it slows down arithmetic operations, it
was originally done to use pointer to c functions as methods before
proper support for wrappers was introduced.

The representation for objects in memory is illustrated at fig-
ure 9. Every object share the same header fields represented in gray:

• values size: The number of user-defined property slots available
in the object

• extension: Reference to another object, should the number of
values required exceeds the number of slots available

• flags: Flags used to traverse the heap

• payload size: The number of bytes in the object’s payload

• prototype: The object’s prototype

• map: The object’s map

User-defined properties extend toward decreasing addresses
from the header and the payload extends toward increasing ad-
dresses. The reference to an object always refers to the first byte of
the payload. This scheme allows symbols and functions to be used
as c-strings and c-functions as well as directly calling to functions
from a function reference.

Except for the payload of strings, functions and maps, every ob-
ject slot uses a boxed representation. This allows manipulation of
the values with regular JS code. An interesting insight is to see ob-
jects in memory as bidirectional arrays, that can be addressed with
negative indexes for access to the header or user-defined properties
and positive indexes for access to the object’s payload. A special
syntax, [@<index>] is provided for that purpose as explained in sec-
tion 3.3. Accessing the map of an object o would be written o[@-1].
Different representation examples for basic types are given at fig-
ure 10. Note that header and value fields have been compressed to
a single slot to simplify the presentation.

An example method, written in C is given at figure 11. This
method takes no arguments other than the defaults, which are the
number of user arguments given, a reference to this (named self
in the C implementation) and a reference to the closure. The ref

function in C boxes a native signed integer. This method is used to
provide reflexive information on the size in memory of the header
part of the object.

values size

extension

flags

payload size

prototype

payload

map

value 0

value 1

...

value n

Reference

Legend

Figure 9. Object Representation

header
values

object symbol

header
values

o \0of

function

header
values

0xdeadc0de

array

header
values

length
0
1
...

length - 1

Reference

Legend

header
values

cell

state
header
values

arguments

length
cell 0
cell 1

...
cell length - 1

function
(closure)

header

values

0xdeadc0de

cell 0

Figure 10. Object Examples

s t r u c t o b j e c t ∗ o b j e c t h e a d e r s i z e (
s i z e t n ,
s t r u c t o b j e c t ∗ s e l f ,
s t r u c t f u n c t i o n ∗ c l o s u r e)

{
re turn r e f (s i z e o f (s t r u c t heade r)) ;

}
Figure 11. Method example

3.5 Compiler Implementation

The compiler uses OMeta [10] for expressing each phase of the
compilation process. The rationale behind this choice was to unify
the implementation of the compiler. This greatly facilitates boot-
strapping because once the OMeta runtime was supported, the
whole compiler was, which would not have been the case if dif-
ferent phases used different features of the JS language. The sec-
ond advantage is that the OMeta notation is more concise and at
a higher-level than JS. It opens the possibility of optimizing the
compiler implementation with domain-specific invariants specific
to pattern-matching and compiler implementation. Although we

have yet to exploit this opportunity, we think that being able to
retarget the OMeta code to the current features and optimizations
supported in the system makes the implementation easy to evolve.

The compiler phases are:

• Parsing: A string is converted to the array-based AST

• Inline Expansion: Inline calls are expanded

• Desugaring: JS converted to a restricted subset, in the spirit of
λJS [2]

• Variable Scope Analysis: Variables are determined to be either
local, captured or global

• Variable Scope Binding: Variables are bound either to the global
object, to a local function or a closure environment

• Optimization: Every message send for property access or update
is tagged such that the runtime can optimize it

• Code Generation: Native executable code is dynamically gen-
erated. A function containing the executable code is returned.

3.6 Discussion

Different implementation choices could be accomodated by the de-
sign presented in section 2. For example, different calling conven-
tions, tagging schemes or object representations could be chosen
while maintaining the properties of the design. More or less opera-
tions of the language could be reified as message sends to provide
late-binding or early-binding depending on the desired properties
of the system.

4. Optimizations
Most optimizations were left out during design, with the exception
of early-binding the location of methods on objects and provid-
ing inline boolean, arithmetic and control-flow operations. Once
self-hosting was achieved two optimizations were introduced. We
present the first to show how the object model made it easy and
explain the second to give background to the empirical results ob-
tained. A full explanation is outside the scope of this paper.

4.1 Lazy creation of prototype property

Functions in JS perform many roles, notably they provide lexical
scoping and serve as constructors. OMeta generated code makes an
extensive use of anonymous functions to provide lexical scoping.
Creating a new prototype object in addition to the function object
each time an operation is performed is both space and time consum-
ing. By redefining the property access method for functions objects
we provided lazy creation of the prototype property easily.

4.2 Inline cache

An inline cache memoizes the lookup of methods by caching the
result at the call site. Since regular methods and meta-methods
are represented in the same way, a cache has the added benefit of
optimizing both.

For a cache to be effective with an important number of objects,
those objects need to be regrouped into families. With the current
object model, two objects belonging to the same family share
the same map. We chose to determine a family based on two
conditions:

• Ancestry: Two objects from the same family have the same
prototype object

• Layout: Two objects from the same family have the same his-
tory of property modifications (creation, deletion)

We identified two things that could be cached:

• Method value: The actual method object found during lookup

• Method offset: The offset at which the method was found

We chose to cache the method value if the value was found on an
ancestor and cache the method offset if the value was found on the
object itself. For simplicity, we implement a monomorphic cache.

In addition to caching the value of a method, the inline caches
and the invalidation mecanism are reused to cache the location
of properties on objects for retrieval and update. This is done by
replacing the method value by a specialized method memoizing the
offset on the object. The caches are invalidated if the layout of the
object changes (because its map would change) or if the retrieval
or update methods are modified. It preserves the properties of the
design.

5. System Bootstrap
The boostrap process is illustrated at figure 12. The first step con-
sists in loading the Photon source code into v8. The compiler is
now available for further compilation.

The second step consists in initializing a new heap for hosting
the photon objects and than bringing up the object model into it.
Since the object model is self-referential, a bootstrap strategy is
needed to initialize it. C Methods are first used to create objects
and assign them only enough functionality to use the object model
operations themselves to complete the rest of the initialization. We
refer the reader to [9] for further details on how to bootstrap a self-
referential object model.

The third step consists in compiling Photon source code with the
compiler hosted in v8. Doing so will render the Photon compiler
available in the Photon heap. The boostrapped compiler is now
available for further compilation.

V8 Photon

Photon
Compiler

Photon
Compiler

Photon
Object Model

Photon
Compiler

Photon
Object Model

Photon
Compiler

Srcs Photon
Compiler

Reference

Legend

Figure 12. Bootstrap

5.1 Serialization

Having a meta-circular compiler implementation greatly simpli-
fies the serialization of the whole system. Once the compiler has
compiled itself, a simple serialization scheme will serialize both
the compiler and the existing objects referenced by the global ob-
ject. This allows the state of the compiler to be serialized with the
same mecanism. In a non meta-circular implementation, a separate
scheme would need to be devised for that purpose.

An interesting insight we had when thinking about the serial-
ization process was to express the layout of objects in memory as
assembly code. By garanteeing that object do not move in memory
during serialization, their current address can be used as a unique
identifier. By expressing the IDs as assembly labels, the assembler
utility can be used to patch addresses in the right places. An exam-
ple serialization for a simple object is given at figure 13.

.align 4

.globl _L83672300
 .long 0
 .long 0
 .long 0
 .long 2*42 + 1
 .long 2*4 + 1
 .long _L83672300
 .long 2*1 + 1
 .long 2*0 + 1
 .long _L51758560
 .long _L83672344
_L83672300:

{
 foo:42
}

4

extension

1

0

prototype

map

42

undefined

undefined

undefined

JavaScript Code Memory Representation x86 Serialized Representation

...

...

Figure 13. x86 Serialization Example

We decided to serialize the system to an x86 executable to avoid
the loading phase needed when starting the system. It has the nice
benefit of producing a self-contained executable in a single file.
We use GCC to assemble the x86 assembly file produced during
the serialization process into a native executable. Interface with
the OS and C methods are kept in a C library file, which will be
compiled at the same time as the x86 assembler image. The process
is illustrated at figure 14. Currently, we use the exact same C file for
bootstrapping with v8 and creating the executable image to avoid
duplication.

Photon

Photon
Object Model

Photon
Compiler

Reference

Legend

x86 assembler
image

x86 assembler
image

Photon C library

x86
executable

File System

File System File System

serialize

compile

Figure 14. Serialization to x86 executable image

6. Use Cases
The following use cases present how different tasks are made easy.
We first show extensibility by adding another object type. We then
show openness by instrumenting a basic operation of the language.
We show how openness makes tasks that that do not necessarily
require dynamism easy. We finally show how openness and exten-
sibililty make supporting other languages easy.

6.1 Extending the object model

The next version of the JS standard, nicknamed Harmony, intro-
duces native support for associative table, which they call Map. To
avoid confusion with the meta-objects in Photon, we distinguish
them by using an uppercase M for the associative table name and a
lowercase m for the meta-objects.

Providing native support brings a performance advantage by
allowing the implementation to heavily optimize the operations of
the new object type. In this use case, we show that our system is
both able to profit from a direct access to memory to implement
native types and reuse much of the existing system to simplify the
introduction of user-defined native types.

For simplicity of presentation, we use an implementation that
performs a linear search for every Map operation. We compare an
implementation done in regular JS with a native implementation
done using extensions presented in previous sections. The regular
JS implementation is given at figure 15. It uses two arrays to store
keys and values. The native implementation is given at figure 16.
It uses the payload section of the object to store the number of
entries in the table and the entries themselves. Doing so eliminates
a level of indirection. Comparing the time required to perform 2000
times each of the set,get,has and delete operations shows a 140%
slowdown between the native and the regular implementation. The
running times are given at table 1.

Implementation Photon (s) Slowdown
Regular JS Map 2.6 1.4
Extended JS Map 1.8 1.0

Table 1. Running times (in seconds) of different implementations
of the Map object

Additional considerations are required for a native implemen-
tation. First, extension of the object is necessary once the payload
section is full. This is done by creating a clone of the current ob-
ject with a bigger payload section and updating the extension slot
of the original object. Every operation on the object then needs
to retrieve the extended object before performing the actual oper-
ation. Second, the object protocol must be followed. In this case,
a new default method is necessary for correct behavior with
the new operator. Third, implementation invariants need to be main-
tained. In this case, the inline cache implementation requires a com-
mon map for all objects created from the prototype. This is achieved
by creating a new map and assigning it to the base map property
of the prototype object.

Some things are provided for free. For example, the extensible
object model provides the regular object behavior without requiring
any additional code for the native implementation.

Comparing the two implementations shows that direct memory
manipulation and additional considerations take twice the number
of lines of code for an equivalent native implementation, to provide
a 30% speedup.

6.2 Profiling the runtime behavior

The runtime profile of a JS program is currently laborious to obtain.
The common approach is to instrument an existing implementation
with various hooks to record runtime events. The major problem

f unc t i on Map () {
var t h a t = t h i s ;
t h a t . k ey s = [] ;
t h a t . v a l s = [] ;

re turn t h a t ;
}

(f unc t i on () {
f unc t i on indexOf (keys , key) {

var l e n g t h = keys . l e n g t h ;
f o r (var i = 0 ; i < l e n g t h ; ++ i)

i f (keys [i] === key) re turn i ;
re turn −1;

}

Map . p r o t o t y p e . g e t = f unc t i on (k) {
var i = indexOf (t h i s . keys , k) ;
i f (i >= 0) re turn t h i s . v a l s [i] ;
e l s e return undef ined ;

} ;

Map . p r o t o t y p e . has = f unc t i on (k) {
re turn indexOf (t h i s . keys , k) >= 0 ;

} ;

Map . p r o t o t y p e . s e t = f unc t i on (k , v) {
var i = indexOf (t h i s . keys , k) ;
i f (i >= 0) re turn t h i s . v a l s [i] = v ;

var keys = t h i s . k ey s ;
var l = keys . l e n g t h ;
keys [l] = k ;
t h i s . v a l s [l] = v ;
re turn v ;

} ;

Map . p r o t o t y p e . d e l e t e = f unc t i on (k) {
var i = indexOf (t h i s . keys , k) ;
i f (i < 0) re turn f a l s e ;

var keys = t h i s . k ey s ;
var l a s t = keys . l e ng t h −1;
var v a l s = t h i s . v a l s ;

i f (i !== l a s t) {
keys [i] = keys [l a s t] ;
v a l s [i] = v a l s [l a s t] ;

}

keys . l e ng t h −−;
v a l s . l e ng t h −−;
re turn true ;

} ;
}) () ;

Figure 15. Regular JS Map implementation

with this approach is that all implementations running in browsers
have been heavily optimized for performance with no concern
about instrumentation.

The existence of an object protocol allows a much easier way to
instrument running programs. Additionally, the ability to dynami-
cally modify the behavior of the system makes it possible to profile
the running behavior for a part of the execution instead of having
to choose between profiling for the whole execution or no profiling
at all.

The following example shows how the number of regular ob-
jects created during execution can be obtained and how the instru-
mentation code can be removed once it is no longer needed. The
example code is given at figure 17. Running this example shows
that 3006 regular objects were created for performing the evalua-
tion of 1 + 2. After reverting the method, the original behavior is
restored. All the instrumentation performed is compatible with the
inline cache behavior. Note that responsability for avoiding recur-
sion in the implementation of object-protocol methods is left on the
programmers shoulders. Knowledge of the code generated by the

compiler is necessary for that purpose. In our opinion, the simplic-
ity of the compilation model makes it reasonably straightforward.

6.3 Profiling compile-time information

Obtaining compile-time information is generally easier than run-
time information. The common approach is to use or write a parser
for the language and then reason on a defined representation. How-
ever some information, such as the number of a given operation
generated by the compiler is compiler-dependent and harder to ob-
tain since it depends on the optimizations performed.

Being able to intercede on a compiler’s behavior permits the
reuse of much of the infrastructure of the compiler to obtain
compile-time information and it provides direct information on the
actual compiler’s behavior. The example given at figure 18 shows
how to obtain the number and nature of message sends generated
by the compiler for a given piece of code.

Again, since intercession on the compiler’s behavior is done at
runtime it is also possible to remove the cost of profiling when it is
no longer needed without having to restart the program.

6.4 Changing the language being compiled

This use case explores the redefinition of a part of the compiler at
runtime to support different syntaxes or semantics. The system al-
lows completely replacing the existing compiler with a new one.
For example, that could be used to provide better runtime perfor-
mance for compiled code or to support a different language.

In this case, we chose to add support for a lisp dialect that
uses most of the keywords and semantics of the JS language. Such
an extension could allow support for syntax macros that would
effectively bring syntactic extensibility to JS.

To keep reusing our beloved Fibonacci example again, an exam-
ple of the syntax is given at figure 19. This is pretty much Scheme
code with the exception that the var keyword is used to define
global variables instead of define and the function keyword is
used to define anonymous functions instead of lambda.

The implementation uses 114 lines of OMeta code to define
a parser and scanner. Since the original parser is exposed on the
global object, rebinding its value to the new parser effectively
changes the syntax system-wide dynamically. After this change, the
system can be serialized again to provide a stand-alone executable
VM that understands a JS lisp-inspired dialect.

7. Empirical Evaluation
We perform an empirical evaluation of the resulting system to
show that it is pratical as an exploration vehicle for implementation
techniques. We first show that our current implementation is simple
as mesured by the number of lines of code of the complete system.
We then show that the implementation is promising in terms of
performance.

7.1 Complexity

We use the total number of lines of code as a proxy for the complex-
ity of the resulting system. To mitigate the effect of writing style, all
the JS source code is subject to a source-to-source translation which
removes all the comments and uniformize the writing style. The re-
sulting output was chosen to approximate a hand-written coding
style. For example, control statements always use curly-braces and
if and else branches are written on different lines.

The system is written in OMeta, JS and C code. All the OMeta
code is compiled to JS. The code required to compile the OMeta
code is included in the total number of source lines of code (SLOC).
The OMeta compiler is itself written in OMeta. The breakdown for
SLOC is given at table 2. An interesting thing to notice is the effect
of meta-circularity on the SLOC number. Since OMeta is meta-
circular, the OMeta runtime used to generate the Photon Compiler

is the same as the one used by the Photon Compiler to compile
JS code. Similarly, the JS runtime used by the Photon Compiler is
the same as the one used by JS code to execute. That code would
have been duplicated if those runtimes had not been shared. A
second interesting thing to notice is the fact that almost a fourth
of the SLOC are written in C. Of those, two-thirds are runtime
methods for objects and the rest concern bootstrap, serialization
and initialization tasks. In the future, we expect to reduce the
amount of C code as more of the runtime functionalities will be
expressed only as JS code.

Category SLOC %
OMeta Compiler(OMeta) 500 3.7
OMeta Runtime (JS) 1000 7.5
Photon Compiler (OMeta+JS) 5000 37.3
Photon Optimizer (OMeta+JS) 500 3.7
Runtime (JS) 3200 23.9
Runtime (C) 2000 14.9
Bootstrap, Serialization, etc. (C) 1000 7.5
V8 Integration (C) 200 1.5
Total 13400 100

Table 2. Source lines of code breakdown by component

We used OMeta code to drastically reduce the number of lines
of code to write and modify. As shown in table 3, for the Photon
Compiler we gain a factor of 6 in expressivity compared to hav-
ing written the same OMeta code by hand. The main gain was ob-
tained through the concise notation for pattern-matching on arrays
afforded by OMeta.

Category OMeta SLOC JS SLOC Expansion factor
OMeta Compiler 500 5000 10.0
Photon Compiler 1100 7200 6.5
Photon Optimizer 10 60 6.0
Total 1610 12260 7.6

Table 3. Expansion factor for OMeta code

Since we needed extensions to JS for writing some of the VM
components, it begs the question of what proportion of the VM
was written using only regular JS code. This figure is interesting
because it gives a rough approximation of the amount of JS code
that can be reused should the object representation or the extension
syntax changes. If we also count the OMeta code, also compiled to
regular JS, table 4 shows that 65% of the total code could be reused
should the internal design of the VM changes. Let’s note however
that assumptions semantically encoded in regular JS code are not
apparent here but we can say from experience that these represent
a small part in terms of SLOC.

Category SLOC %
OMeta 1600 12
Regular JS 7100 53
Extended JS 1500 11
C 3200 24
Total 13400 100

Table 4. Proportion source lines of code by language

Comparison to one of our previous attempts at a JavaScript
meta-circular VM[1] shows a reduction of a factor of 5 in terms
of lines of code (13.4KLOC vs 75KLOC). The reduction in the
SLOC number can mostly be attributed to the usage of OMeta
as well as the elimination of the SSA representation and register
allocator. Comparison to V8 shows a factor of 28 (13.4KLOC vs

375KLOC) although to be fair, V8 provides a complete support for
JS and backends for x86 32-bit and 64-bit as well as ARM. Using
the SLOC number as a proxy shows that Photon is a much simpler
system than other alternatives.

7.2 Performance

Performance was not the focus of the current implementation. We
still compare our system to a state-of-the-art implementation to pro-
vide ballpark figures of its current performance. We show execu-
tion times for common sunspider benchmarks as well as v8-hosted
and self-hosted compilation time. We then give explanations for
the current bottlenecks and we propose implementation strategies
to remove them.

All the numbers were obtained on an early 2011 MacBook Pro
running OS X Lion 10.7.3 with a 2.2 GHz Intel Core i7 and 8 GB
of memory. Both our system and d8 were compiled for x86 32-bit.
We used revision 7928 of d8 and the 0.9.1 sunspider benchmarks.

Since our system does not support equality comparison (==),
those were converted to identity comparisons (===). Code executing
in the global environment was also put in a function to permit
serialization of the compiled code when running inside Photon. It
was done to avoid compilation when running tests. The same code
is used for tests both on V8 and Photon. Those two modifications
did not significantly affect the running time on V8.

7.2.1 Execution Time

We show some sunspider benchmarks results. As a reminder, we do
not optimize constant arithmetic operations, every local variable is
accessed on the stack and we follow the 32-bit calling conventions
of C. Given these, the results look promising, since there is a lot of
room for improvement using known techniques.

Two variations of some tests are introduced to illustrate the
current bottlenecks of Photon. In the first one, we removed the
string creation in the access-fannkuch.js benchmark. The resulting
string was not used in the benchmarks, therefore it does not change
the algorithm. We label the modified benchmark with (no string).
In the second one, we replace the new operation in access-binary-
tree.js with an internal cloning operation of a representant object
with all the expected properties. We label the modified benchmark
with (cloning). This benchmark cannot be run on V8 anymore, we
therefore compare the running time on Photon with the original
running time on V8.

Table 5 shows the relative speed of Photon and V8. We compare
the speed of our system using inline caches (ic) to the speed of V8.
This simple implementation strategy brings our system within a
factor of 3 of V8 on a function call intensive benchmark such as
controlflow-recursive.js. Our system is within a factor of 14 of V8
if we do not consider the two degenerated cases.

Test Name Photon (ic) V8 Slowdown
controlflow-recursive.js 1.845 0.584 3.16
access-nsieve.js 3.427 0.542 6.32
access-fannkuch.js 89.417 1.835 48.72
access-fannkuch.js (no string) 18.389 1.804 10.19
access-binary-tree.js 58.940 0.360 163.72
access-binary-tree.js (cloning) 5.000 - 13.88

Table 5. Execution time for 400 iterations of some sunspider
benchmarks (seconds)

The two slowest running times can be explained as follow. Dur-
ing the original fannkuch benchmark, a linear search is performed
for string internalization each time a string is created, making the
running time proportional to the number of strings in the system.
During the original binary tree benchmark, the creation of an object
within Photon performs an introspective search on the prototype to

find an existing base map as a JS property to maintain the inline
cache invariants. Potential solutions to these two problems will be
addressed in the discussion section.

Table 6 shows the effect of inline caches on execution time.
Given the pervasive use of message sends in the object model
implementation to late-bind object behavior, it is of little surprise
that inline caches (ic) give a huge boost to performance. When not
using them (noic) the system is between 4 and 51 times slower.

Test Name Photon (noic) Photon (ic) Slowdown
controlflow-recursive.js 4.606 0.195 23.62
access-nsieve.js 17.716 0.346 51.20
access-fannkuch.js 84.504 9.079 9.30
access-fannkuch.js (no string) 78.079 1.835 42.55
access-binary-tree.js 23.428 5.973 3.92
access-binary-tree.js (cloning) 15.613 0.507 30.79

Table 6. Execution time for 40 iterations of some sunspider bench-
marks (seconds)

7.2.2 Compilation Time

Table 7 gives the compilation time for two of the precedent bench-
marks. It shows a factor of 100 between the self-hosted and the
v8-hosted version. From the result given in the previous section,
we believe this is mostly caused by the speed of the object creation
protocol.

Additionally, bootstrapping the current system on V8 currently
takes around 30 seconds. Given the slowdown factor when per-
forming self-hosted compilation, we did not attempt a self-hosted
bootstrap.

Test Name Photon (ic) Photon (noic) Photon/V8
controlflow-recursive.js 10.780 8.858 0.085
access-nsieve.js 10.022 8.103 0.078
Total

Table 7. Compilation Time for some benchmarks (seconds)

Table 8 gives the relative compilation time for each compilation
phase. When v8-hosted compilation is done, parsing dominates
the compilation time. However, when self-hosted compilation is
performed, code generation is dominating by a factor of 10 in the
worst case over parsing. We believe this is also because the object
creation protocol is slow. Usage of inline caches actually negatively
impact performance because more objects are created during code
generation.

Phase Photon (ic) Photon (noic) Photon/V8
Parsing 9 11 48
Inline Expansion 0 0 2
Desugaring 0 0 2
Variable Analysis 0 0 2
Variable Scope Binding 0 0 4
Optimization 0 0 4
Code Generation 87 86 33

Table 8. Compilation Time Breakdown in % for controlflow-
recursive.js

7.2.3 Discussion

Both execution time and compilation time performance are deter-
mined mostly by the limited time we had to optimize the imple-
mentation, not by limitations in the design. We provide here pos-
sible solutions to the problems identified and we show that with
reasonable efforts the system could be made pratically fast.

The previous results indicate that object creation and string in-
ternalization are major bottlenecks of the current implementation.
Object creation could be sped up using a caching strategy for the
initial creation of the object and subsequently for the field initial-
ization. String internalization can be made amortised constant time
instead of linear time by using a hash map. Those two problems
will be addressed in the near future since the implementation effort
required is minimal.

Once all the common object model operations will be appro-
priately cached, the next step to reduce the execution performance
gap between V8 and our system will be to provide optimized in-
structions for constant arithmetic operations and combine test in if
expressions with the code generated for the conditional branching.
This should also mitigate the absence of a register allocator by pre-
venting access to the stack for binary operations with a constant.

Compilation time can be reduced by preencoding patterns of in-
structions for each corresponding AST node. Encoding is currently
performed by making calls to the in-memory assembler for each
instruction to encode. Encoding currently allocates many objects in
the heap. Preencoded patterns could be exposed as functions that
would patch values in a array mostly composed of integers. This
will reduce self-hosted and v8-hosted compilation time since the
number of created objects will be drastically reduced.

The compilation time breakdown for v8-hosted compilation
shows that parsing is the dominant factor time-wise, followed
closely by code generation. Further inquiry in the runtime behav-
ior of OMeta grammars will be needed to see if this is something
that could be optimized with changes to the grammar or with a
more sophisticated OMeta compiler or if limitations in the design
of OMeta would prevent such optimizations.

8. Experience Report
This experience taught us that bootstrapping a new self-hosted
system is a compromise between simplicity of implementation
and performance of the resulting system. Although our current
implementation is too slow to serve for its own bootstrap, being
able to bootstrap the system on V8 in 30 seconds allows fast
experiments to be made to determine the origin of performance
bottlenecks. Our previous experience with Tachyon was that 3 to 8
minutes were required for bootstrap, drastically reducing the speed
at which experiments could be performed. In our opinion, this was
mostly caused by the size of the code base and the really rich
internal representation used to represent code, which required an
important number of objects to be allocated.

This suggests that when bootstrapping a self-hosted system, the
first thing to do is to keep the implementation as simple as pos-
sible to minimize the quantity of code to compile. Bootstrapping
time can be minimized by borrowing performance from existing
optimized implementations, in our case, the V8 implementation for
compiling the system and the C compiler to provide method behav-
ior for objects. Should an existing optimized implementation did
not exist, a fast compiler could be written in C. Compilation time
can then be reduced by optimizing the bootstrap compiler. In our
case, it is the same as the self-hosted compiler so this optimization
benefits both. Once boostrap is near instantaneous, experiments can
be performed to find and address performance bottlenecks until pe-
formance becomes a non-issue for all common development tasks.

For future work on Photon, the first thing to optimize would
be the compilation speed on V8 by reducing the number of ob-
jects created, then addressing the speed bottlenecks introduced by
OMeta until the bootstrap on V8 is near instantaneous. The next
thing to optimize will be the self-hosted compilation speed until it
is also near instaneous for incremental modification of the live sys-
tem. That will allow fast experiments to be made until self-hosted
bootstrap is near instantaneous. At that time, the system will be

truly independent of existing implementations and free to evolve
by itself to explore different implementation strategies. Boostrap-
ping speed will not be a limiting factor in the exploration of VM
implementation.

9. Related Work
The design for an open and extensible object model has already
been proposed by Ian Piumarta and Alessandro Warth [9]. How-
ever, its applicability to existing languages has not been verified
empirically. The main contribution of this paper is to provide a case
study for taking an existing dynamic language, JavaScript, and turn
it into an open and dynamic implementation where user-defined
functions can modify its behavior at runtime. We confirm the re-
sulting flexibility by showing that various extensions and profiling
tasks are made simple and we perform an empirical evaluation of
the resulting system. The choice of examples and the empirical re-
sults presented aim to illustrate the suitability of the VM for re-
search purposes.

TODO: comparison to smalltalk, factor, self, pypy, lively kernel,
rubinius, maru, kernel, slate

See: MOP in JavaScript, see OOPSLA 2011

10. Future Work
The simplifications made during the implementation effort are not
mandated by the proposed design. Empirical evaluation of other
implementation options will allow a better understanding of the
impact on performance of the current design. One notable item of
interest will be to measure the overhead of also allowing redefini-
tion of fixnum and boolean operations at runtime and removing the
object layout assomption in the bind operation.

Acknowledgments
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Fonds
Québécois de la Recherche sur la Nature et les Technologies
(FQRNT) and Mozilla Corporation.

A. Appendix
A.1 JavaScript reserved properties

big table with all the reserved properties

References
[1] M. Chevalier-Boisvert, E. Lavoie, M. Feeley, and B. Dufour. Boot-

strapping a self-hosted research virtual machine for javascript: an ex-
perience report. In Proceedings of the 7th symposium on Dynamic
languages, DLS ’11, pages 61–72, New York, NY, USA, 2011. ACM.

[2] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript.
ECOOP 2010–Object-Oriented Programming, pages 126–150, 2010.

[3] U. Hölzle and D. Ungar. Reconciling responsiveness with perfor-
mance in pure object-oriented languages. ACM Transactions on Pro-
gramming Languages and Systems, 18:355–400, July 1996.

[4] E. C. M. A. International. ECMA-262: ECMAScript Language Spec-
ification. ECMA (European Association for Standardizing Informa-
tion and Communication Systems), Geneva, Switzerland, third edition,
Dec. 1999.

[5] A. C. Kay. The early history of smalltalk. In The second ACM
SIGPLAN conference on History of programming languages, HOPL-
II, pages 69–95, New York, NY, USA, 1993. ACM.

[6] G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, USA, 1991.

[7] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part i. Commun. ACM, 3(4):184–195, Apr.
1960.

[8] I. Piumarta. Open, extensible composition models. In Proceedings of
the 1st International Workshop on Free Composition, FREECO ’11,
pages 2:1–2:5, New York, NY, USA, 2011. ACM.

[9] I. Piumarta and A. Warth. Self-sustaining systems. chapter Open,
Extensible Object Models, pages 1–30. Springer-Verlag, Berlin, Hei-
delberg, 2008.

[10] A. Warth and I. Piumarta. Ometa: an object-oriented language for
pattern matching. In Proceedings of the 2007 symposium on Dynamic
languages, DLS ’07, pages 11–19, New York, NY, USA, 2007. ACM.

f unc t i on Map () {
re turn t h i s ;

}

(f unc t i on () {
f unc t i on indexOf (m, key) {

var l e n g t h = m[@ l e n g t h o f f s e t] ∗ 2 ;
f o r (var i = f i r s t e n t r y o f f s e t ; i < l e n g t h ; i += 2)

i f (m[@i] === key) re turn i ;
re turn −1;

}
f unc t i on c a p a c i t y (m) {

re turn (m[@−3]/ s i z e o f r e f − f i r s t e n t r y o f f s e t) / e n t r y s i z e ;
}
f unc t i on p a y l o a d s i z e (c a p a c i t y) {

re turn (c a p a c i t y ∗ e n t r y s i z e + f i r s t e n t r y o f f s e t)∗ s i z e o f r e f ;
}
f unc t i on ex t end (m, cap) {

var t h a t = m[@−5];
var copy = t h a t . c l o n e (p a y l o a d s i z e (cap)) ;
var l e n g t h = t h a t [@−3] / s i z e o f r e f ;

f o r (var i = 0 ; i < l e n g t h ; ++ i)
copy [@i] = t h a t [@i] ;

m[@−5] = copy ;
re turn copy ;

}

var l e n g t h o f f s e t = 0 ;
var f i r s t e n t r y o f f s e t = l e n g t h o f f s e t + 1 ;
var i n i t n b = 10 ;
var e n t r y s i z e = 2 ;
var s i z e o f r e f = t h i s . r e f s i z e () ;
var i n i t p a y l o a d = p a y l o a d s i z e (i n i t n b) ;

Map . p r o t o t y p e = Map . p r o t o t y p e . c l o n e (
(f i r s t e n t r y o f f s e t + e n t r y s i z e)∗ s i z e o f r e f

) ;
Map . p r o t o t y p e [@0] = 0 ;

Map . p r o t o t y p e . n ew = f unc t i on () {
var t h a t = t h i s . i n i t (0 , i n i t p a y l o a d) ;
t h a t [@−1] = t h i s . b a s e m a p ;
t h a t [@−2] = t h i s ;
t h a t [@ l e n g t h o f f s e t] = 0 ;
re turn t h a t ;

}

Map . p r o t o t y p e . n e w d e f a u l t = Map . p r o t o t y p e . n ew ;
Map . p r o t o t y p e . b a s e m a p = Map . p r o t o t y p e [@−1] . n ew () ;

Map . p r o t o t y p e . g e t = f unc t i on (k) {
var t h a t = t h i s [@−5];
var i = indexOf (t h a t , k) ;
i f (i >= 0) re turn t h a t [@i + 1] ;
e l s e return undef ined ;

} ;

Map . p r o t o t y p e . has = f unc t i on (k) {
re turn indexOf (t h i s [@−5] , k) >= 0 ;

} ;

Map . p r o t o t y p e . s e t = f unc t i on (k , v) {
var t h a t = t h i s [@−5];
var i = indexOf (t h a t , k) ;

i f (i >= 0) re turn t h a t [@i+1] = v ;

var l e n g t h = t h a t [@ l e n g t h o f f s e t] ;
var cap = c a p a c i t y (t h a t) ;

i f (l e n g t h === cap) t h a t = ex t end (t h i s , 2∗ cap) ;

var i = 2∗ l e n g t h + f i r s t e n t r y o f f s e t ;
t h a t [@i] = k ;
t h a t [@i + 1] = v ;
t h a t [@ l e n g t h o f f s e t]++ ;
re turn v ;

} ;

Map . p r o t o t y p e . d e l e t e = f unc t i on (k) {
var t h a t = t h i s [@−5];
var i = indexOf (t h a t , k) ;
i f (i < 0) re turn f a l s e ;

var l e n g t h = t h a t [@ l e n g t h o f f s e t] ;
var l a s t = 2∗ (l e ng t h −1)+ f i r s t e n t r y o f f s e t ;

i f (i !== l a s t) {
t h a t [@i] = t h a t [@las t] ;
t h a t [@i+1] = t h a t [@las t + 1] ;

}

t h a t [@ l e n g t h o f f s e t]−−;
re turn true ;

} ;
}) () ;

Figure 16. Extended JS Map implementation

var count , r e s e t ;

f unc t i on i n s t r (f) {
var c o u n t e r = 0 ;

var g = f unc t i on () {
c o u n t e r ++;
re turn f . c a l l (t h i s) ;

} ;

r e v e r t = f unc t i on () {
re turn f ;

} ;

c oun t = f unc t i on () {
re turn c o u n t e r ;

} ;

re turn g ;
}

Ob j e c t . p r o t o t y p e . n ew = i n s t r (
Ob j e c t . p r o t o t y p e . n ew

) ;
e v a l (” 1+2”) ;
p r i n t (” Ob j e c t . p r o t o t y p e . n ew c a l l e d ”

+ coun t () + ” t ime s ”) ;
Ob j e c t . p r o t o t y p e . n ew = r e v e r t () ;
o = {} ;

Figure 17. Dynamic profile of the number of regular objects cre-
ated

var r e v e r t ;

f unc t i on i n s t r g e n s e n d (f)
{

var g = f unc t i on (nb , rcv , msg , a rgs , b i n d h e l p e r)
{

p r i n t (” G e n e r a t i n g send ’ ” + msg + ” ’ ”) ;
re turn f . c a l l (t h i s , nb , rcv , msg , a rgs , b i n d h e l p e r) ;

}

r e v e r t = f unc t i on ()
{

re turn f ;
} ;

re turn g ;
}
Pho tonCompi le r . c o n t e x t . g en send = i n s t r g e n s e n d (

Pho tonCompi le r . c o n t e x t . g en send
) ;
e v a l (” f u n c t i o n f i b (n) {” +

” i f (n<2) r e t u r n n ; ” +
” r e t u r n f i b (n−1)+ f i b (n−2); ” +

”}”) ;
p r i n t (f i b (1 0)) ;
Pho tonCompi le r . c o n t e x t . g en send = r e v e r t () ;

Figure 18. Static profile of message sends generated

(var f i b (f unc t i on (n)
(i f (< n 2)

n
(+ (f i b (− n 1)) (f i b (− n 2))))))

(p r i n t (f i b 4 0))

Figure 19. Lisp-inspired syntax example for JS

