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1 Introduction

The use of dynamic programming languages, in particular JavaScript, has been
rising dramatically over the last 10 to 20 years. Not long ago, implementing
software in a dynamic language often meant trading efficiency for expressiveness.
However, with the advent of client and server-side scripting in the browser, there
has been a strong push to increase the performance of dynamic languages.

Various techniques have been discovered to compile more effective code and
execute dynamic languages more effectively, including the use of tracing JIT
compilers, inline type caches and type feedback systems. With these techniques,
the performance of dynamic languages has greatly improved, but there is still
room for improvement as programs written in dynamic languages are often still
an order of magnitude slower than equivalent programs written in C.

What makes dynamic languages more expressive is often what also makes
them slower. Implementing dynamic typing, late binding and dynamic dispatch
conceptually requires the compiler to insert type checks into the generated code.
Primitive values may also need to be boxed[5] because the types of variables are
not constrained ahead of time and the generated code needs to be able to deal
with multiple possibilities. This generality can incur a large penalty in terms of
execution time.

In order to maximize the performance of dynamic languages, it is necessary
to reduce the occurence of dynamic type checks to a minimum. Doing so ef-
fectively requires analyzing programs so as to attempt to determine potential
variable types. Precise type information offers guarantees that make it possible
to eliminate redundant type checks and otherwise specialize compiled code to
maximize its efficiency.

Precise static analysis of dynamic programming languages is a challenging
problem, as language constructs such as eval make it possible to load new code
on the fly, essentially nullifying analysis results, forcing type analyses to make
an open-world assumption. Another difficulty arises from the object model used
in languages such as JavaScript, where objects are not necessarily initialized all
at once, but rather extended on-the-fly through the progressive addition of new
fields.
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We examine static analysis strategies to obtain precise type information
about JavaScript programs. Because objects are a central part of the language
and efficient property accesses are crucial for good performance, special atten-
tion is paid to the issues pertaining to the analysis of object types.

The main contributions of this paper are:

• A survey of related work pertaining to the type analysis of JavaScript
programs.

• A presentation of the current design of our type analysis.

• An examination of potential directions to improve the scalability and pre-
cision of our type analysis.

2 Related Work

LISP, a programming language designed by John McCarthy in 1958, was the first
dynamic language. The first implementation of this language was interpreted.
LISP quickly attracted much interest, particularly in artificial intelligence re-
search. It became obvious, however, that a more efficient implementation which
could compile LISP to machine code would yield significantly higher perfor-
mance.

LISP dialects rely on late-binding, but in typical LISP programs, most func-
tion invocations always call the same function. Hence, to compile LISP programs
efficiently, a compiler should ideally be able to determining which closures (lamb-
das) a given symbol may refer to. The k-CFA analysis was designed to try and
answer this question[10]. This analysis relies on a fixed-point calculation which
can take k-degrees of context into account to predict which values symbols may
refer to at run-time.

A recent publication by Adams et al. outlines a flow-sensitive type-recovery
algorithm which runs in log-linear time and is able to scale to hundreds of
thousands of lines of Scheme code[1]. This algorithm is based on sub-0CFA and
achieves its impressive scaling properties by limiting flow-sensitivity to singleton
type sets only and by the use of cached skipping functions which allow type
information to avoid threading through individual expressions when possible.

The algorithm designed by Adams et al. shows very impressive performance
and outlines interesting strategies to maximize scaling of type inference algo-
rithms. We are concerned, however, that their approach might be unsuitable for
JavaScript programs. The limitation of flow-sensitivity to singleton type sets
only is rather restrictive, considering that a significant proportion of call sites in
typical JavaScript programs are polymorphic[9]. The type system used in this
analysis is also rather simplistic and does not account for any kind of object
system.

SELF is a minimalist dynamic programming language derived from Smalltalk.
Like Smalltalk, it features a prototype-based object model, and every primitive
value in the language behaves as an object which can receive messages. In SELF,
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however the object inheritance hierarchy can change dynamically, making the
language more difficult to optimize effectively.

In order to make the performance of SELF programs more competitive, a
constraint-based type inference analysis was developed[2]. It is a whole-program
analysis which represents constraints within a trace graph where nodes corre-
spond to objects and methods and edges correspond to message sends. The
analysis is flow-insensitive and runs in polynomial time.

The SELF type inference analysis seems to fare well for SELF programs,
but it does not make use of flow-sensitivity, and thus cannot exploit useful
optimization opportunities. Another real concern is that it is often assumed
that SELF objects are constructed all at once, with all their properties being
defined at the same time when the object is defined. This is generally not the
case in JavaScript, where objects are often initially empty, and new properties
are added later in their lifetime.

An important problem in object-oriented dynamic languages such as JavaScript
is to gather precise information about object property types. This is complex
because languages like SELF and JavaScript allow objects to grow dynami-
cally. The concept of recency types, initially proposed for the analysis of heap-
allocated data[3] has been adapted to dynamic languages[6]. Proponents sug-
gest that in typical JavaScript programs, objects are initialized early on in their
lifetime.

The idea behind recency types is then to represent objects using two differ-
ent abstractions. The recent type represents the single most-recently allocated
object at a program point. This type maps to a single object at a given time
during execution, and so mutations to it can be accounted for using strong up-
dates, allowing a precise representation of the object during initialization. After
their initialization phase, recent object types are demoted into summary types
which accounts for all objects allocated at given program points.

A recent trend in type analysis has been to build such analyses based on the
may points-to analysis framework. In this framework, the state of a program is
typically represented by a graph in which there are variable and value nodes.
Edges go from variables to values and represent the fact that a given pointer
variable may point to a given value[11]. This framework is convenient to reason
with and adapts quite well to dynamic languages in which reference variables
are analogous to pointers.

In 2006, Jensen et al. published a type analysis for JavaScript based on the
points-to framework[7]. This analysis is flow-sensitive and path-sensitive. It
represents whole-program type graphs including all variables and object prop-
erties at every program point. The analysis also makes use of recency types to
analyze object types more precisely. The type abstraction used is multidimen-
sional and able to represent objects, constants as well as integer ranges. This
analysis suffers from scalability problems but it is the first analysis to try and
tackle all of the JavaScript language.

This work was recently extended to try and improve the scalability of the
analysis using lazy propagation techniques[8]. This improved analysis has bet-
ter scalability but still takes minutes to complete on medium-size benchmarks.
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While high precision may be the biggest strength of Jensen et al.’s analysis,
scalability issues still remain its most important weakness. At this time, this
analysis is entirely unsuitable for use in a JIT compiler, and may not be able to
scale to very large JavaScript programs, even for offline analysis.

Limitations prevent static analysis from being able to cope with the full
scope of dynamic languages. In a purely static setting, constructs such as eval
must be ignored or limited in some way. One way to avoid such limitations is
to design a hybrid analysis which can be incrementally updated as a program
is running. In this way, when a construct the analysis cannot handle, such
as eval, is encountered, the analysis can temporarily ignore it and defer its
analysis until run-time, at which point the analysis results can be incrementally
updated. Dataflow-based analysis frameworks make such incremental updates
easy to perform by simply iterating until a new fixed-point is reached.

Brian Hackett, programmer and researcher at Mozilla, has designed a hybrid
static and dynamic analysis which follows this principle. It is a flow-sensitive
dataflow analysis. Its results are used to optimize real-world JavaScript pro-
grams running in the Firefox web browser. This analysis not only defers the
analysis of some language constructs, it can also make optimistic assumptions
about the contents of some variables and properties by inserting guards that
dynamically verify the validity of these assumptions at run-time. If these dy-
namic checks report that some analysis results are no longer valid, the analysis
results can be updated, and affected parts of programs recompiled.

Mozilla’s type inference analysis shows impressive results and has already
been integrated in a production web browser. It is able to scale to large pro-
grams and runs fast enough for its use to be justified, even within a JIT compiler.
The main weakness of this analysis, however, may be its lack of precision when
it comes to analyzing object property types. This lack of precision forces the in-
clusion of run-time guards to check that certain values do not occur at run-time.
We believe that a more precise analysis may be able to definitively eliminate
more guards and produce better performance on long-running programs.

3 Analysis Design

The type analysis we have implemented operates on a Static Single Assignment
(SSA) intermediate representation. It is both flow-sensitive and path-sensitive.
The analysis is a forward dataflow analysis which iterates until a fixed-point is
reached. The analysis is sparse, that is, basic blocks and function bodies are
only explored when the analysis determines they may be reached. A control-
flow graph is built as the analysis runs. Type graphs representing the types of
all variables and properties are available at all program points the analysis finds
to be reachable. The following sections provide more details about the most
salient aspects of our type analysis.
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3.1 Flow-sensitivity

The SELF type analysis was a whole-program, flow-insensitive and path-insensitive
analysis[2]. The JavaScript programming language takes some inspiration from
SELF, but we are instead aiming to build an analysis which is is both flow-
sensitive and path-sensitive. This will obviously incur a higher cost in terms of
execution time, but we believe this tradeoff is necessary in order to gain more
precise type information and optimize the language more effectively.

The fastest whole-program type analyses are of the flow-insensitive vari-
ety. In such analyses, the order of execution of statements is not taken into
account. A fixed-point is instead computed over a graph of constraints repre-
senting all interactions between variables through function calls and operators.
Such an analysis would undoubtedly reveal some information about JavaScript
programs, but we feel it would most likely fail to take into account very useful
information contained within the said programs.

Building a flow-sensitive analysis instead can allow us to more efficiently nar-
row the range of loop variables and take advantage of some built-in JavaScript
constructs. It is fairly idiomatic in JavaScript code, for example, to make use
of the typeof and instanceof operators in branch tests to perform different
actions on values of different types (ex.: Listing 1). With the use of flow-
sensitivity, it becomes possible to narrow the types of values on either side of a
branch, which can be very useful for optimization.

Listing 1: Typical use of the instanceof operator
1 if (ast === null)
2 {
3 // no transformation
4 return ast;
5 }
6 else if (ast instanceof OpExpr)
7 {
8 ast.exprs = ast_walk_exprs(ast.exprs, ctx);
9 return ast;

10 }
11 else if (ast instanceof NewExpr)
12 {
13 ast.expr = ctx.walk_expr(ast.expr);
14 ast.args = ast_walk_exprs(ast.args, ctx);
15 return ast;
16 }
17 else if (ast instanceof CallExpr)
18 {
19 ast.fn = ctx.walk_expr(ast.fn);
20 ast.args = ast_walk_exprs(ast.args, ctx);
21 return ast;
22 }

3.2 Type Abstraction

The type abstraction we use for our analysis is that of a type set. At each
program point, each variable and property has an associated set of values which
it may have at run-time. This can be a set of object abstractions or primitive
values. A separate object abstraction is associated with each program point
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where an object can be created. That is, each program point where there is an
object literal or a constructor call using the new keyword.

In the case of integer and string primitives, we limit ourselves to being able
to represent an integer constant or an integer range as well as a separate string
constant. We do this to try and prevent situations in which the type set could
grow to contain a potentially infinite number of constants. We have deemed
the ability to represent integer ranges potentially useful in order to prove that
integer variables may be representable as machine integers.

Object abstractions are equivalence classes representing one or multiple ob-
jects created at the same program point (source code location). Object abstrac-
tions have a set of associated properties, each of which has its own type set. The
prototype value of objects has its own associated type set as well. The global
object and library prototype objects are treated in the same way as user-created
objects.

3.3 Path-sensitivity and Strong Updates

One of the main difficulties in analyzing JavaScript code is that the language
has no inherent concept of classes. The object system is instead prototype-
based, like that of SELF. Unlike SELF, however, JavaScript objects are most
often created empty, without properties of their own. Properties may then be
added at any point during the execution of a program. This is problematic
because when a property is read, if we cannot guarantee that it was previously
defined, we must assume that the property may also take the special undefined
value. The undefined value can easily spread through an analysis, polluting
its results.

Much of our efforts are focused on analyzing object property types more
precisely, so as to minimize the occurrence of superfluous undefined values. In
order to guarantee that a given property is defined at a given program point,
it is necessary to be able to analyze the initialization of objects with sufficient
precision. More specifically, it is very useful to be able to analyze object types
with path-sensitivity, that is, allowing properties to have different types at dif-
ferent program points, so that strong updates can be performed on the property
types when properties are written to in the program being analyzed.

Performing strong updates on a property means discarding and replacing the
previous type information associated with it, instead of performing the union
of the type written with its current type. Doing so requires proving that, at
run-time, all objects associated with a given object abstraction will receive this
mutation. This is not always the case as object abstractions can represent an
arbitrary number of runtime objects, and not all of these objects flow through
the same paths at run-time. Thus, knowing that a property write applies to
objects of a given abstraction does not necessarily imply that all objects of this
abstraction will undergo this operation.

There are several cases in which it is obvious that an object is suitable for
strong updates. One is when the object in question is a trivial singleton, such as
the global object, a global function, or the default prototype property object
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of a global constructor function. Another case is when an object was created
in the current function and the mutation is being performed through a direct
reference to this object. In this case, if, along any branch, we write to a property
of this object through the reference, we know that we are writing to all objects
of this type that can possibly go through that branch. Another useful case is
when we are manipulating the this value of a function that is only ever called
as a constructor.

f()
   ...
   var o = {}
   ...
   g(o);
   ...
   h(o)
   ....

g(o)
   ...
   i(o);
   ...

h(o)
   ...
   i(o);
   ...

i(o)
   ...
   o.p = k;
   ...

Figure 1: Strong Update with the Dominance Rule

We have observed that there seems to be a general rule, which we will call
the dominance rule, that guarantees the safety of strong updates. It appears
that when an object is created in the current function, in a caller of the current
function or in a common ancestor of all callers of the current function, it is safe
to perform strong updates on this object. When a property write applies to a
single object abstraction, this rule appears to guarantee that we are operating
on all objects which are part of that equivalence class. In Fig. 1, the object is
created in f can be strongly updated in i because f is a common ancestor of
all callers of i. We have not yet found a proof of this assumption, but this may
be worth further examination, as finding such a proof could make our analysis
more powerful.

3.4 Analysis of Property Accesses

JavaScript objects and arrays essentially behave as dictionaries where the keys
are strings. Non-string values are implicitly converted to strings. Our analy-
sis currently handles only constant strings and non-negative integers as keys.
Strings are mapped to individual property type sets in object abstractions. All
non-negative integer keys all map to the same indexed property type set. This
is done under the assumption that integer keys most often refer to indexed
homogeneous array properties.

When analyzing a property write o.k = v on an object property, four type
sets are involved. Three of those sets are obvious: the type set of the object o,
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that of the key k (property name), and that of the value v to be assigned to the
property. The fourth is the type set associated with the property in the current
type graph (associated with the current basic block).

There are only two cases to handle. If strong updates are possible (see
Section 3.3), the current type set for the property is replaced by that of the
value v. Otherwise, if strong updates are not possible, the type set of the
property becomes the union of its current value and the type set for v.

The examples shown in Fig. 2 and Fig. 3 illustrate property write with
and without strong updates, respectively. In the said examples, properties have
solid round outlines, values have dashed square outlines and objects abstractions
have dashed round outlines. Solid arrows represent definite set membership and
dashed arrows represent possible set membership.

o = { k: 6 }1;
v = "foo";

1 k 6

"foo"

o.k = v;

global o

v

1 k

"foo"

global o

v

Figure 2: Property Write with Strong Update

o = { k: 6 }1;
v = "foo";

1 k 6

"foo"

o.k = v;

global o

v

1 k 6

"foo"

global o

v

Figure 3: Property Write without Strong Update

When analyzing a property read v = o.k on an object property, multiple type
sets are involved. Two of those sets are obvious: the type set of the object o

and that of the key k (property name). However, there are at least two other
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type sets involved: the current type set associated with the property and the
type set for the object’s prototype.

o = { k: 6 }1;

1 k 6

v = o.k;

global o

1 kglobal o

v

6

Figure 4: Trivial Property Read

In the simplest case, the property being read is defined on the object. Its
type set is looked up in the current type graph and returned directly (see Fig.
4). However, if the property may not be defined on the object, the property
look up will recurse on the object’s prototype. Note that the prototype type
set may actually contain multiple objects, in which case the lookup needs to be
performed on each one. All the resulting types obtained are unioned into an
output type set. The recursion terminates when the prototype type set for an
object only contains null, as is the case with the object prototype object. In
this case, the undefined type is returned (see Fig. 5).

3.5 Scalability

Path-sensitive analyses have the reputation of not scaling very well in terms of
running-time and memory usage. In the case of our analysis, the implementation
currently propagates type sets for each property and variable encountered thus
far along all control-flow paths, and a separate type graph instance is kept for
each basic block analyzed. The number of variables and properties increases
with program size, and so does the number of basic blocks, which leads to an
approximately quadratic scaling in terms of memory usage, and worse than
cubic running time.

This issue of scaling has been a real problem in our experience. For one,
the current implementation of our type analysis is too slow to be usable in
many real-world use cases, with analysis times easily exceeding 5 minutes for
moderate-size programs. On some benchmarks the analysis ran out of memory,
on others, we could not get convergence within a reasonable time. It is clear to
us that this is a problem that must be addressed.

4 Results

In this section, we report some preliminary analysis results. These results
were gathered on some of the larger benchmarks from the SunSpider and V8
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o = {}1;
if (Math.random() < 0.5) o.k = 6;

1 k 6

v = o.k;

global o

proto

obj_proto

proto null

1 k 6global o

proto

obj_proto

proto null

v undefined

Figure 5: Property Read on Potentially Missing Property
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Figure 6: Analysis Accuracy Statistics

JavaScript benchmark suites. These are nontrivial and range from 50 to 900
lines of code. Based on the analysis results, we have computed several statis-
tics approximating quantities we believe translate into run-time optimization
potential.

The statistics are percentages computed on a per-instruction basis, and are
as follows:

• getProp on Object only: proportion of property reads where the base of
the read is known to always be an object.

• getProp on known object: proportion of property reads where the base is
a known single object.

• getProp output not undef: proportion of property reads not returning the
undefined value.

• putProp on Object only: proportion of property writes where the base is
known to always be an object.

• putProp on known object: proportion of property writes where the base
is a known single object.

• function call monomorphic: proportion of function calls determined to be
monomorphic.
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• arith op on int & int: proportion of arithmetic operations determined to
always receive two integers as input.

• compare op on int & int: proportion of comparison operations determined
to always receive two integers as input.

• branch direction known: proportion of branches whose direction has been
statically determined.

The resulting statistics can be seen in Figure 6. In every benchmark, over
80% of function calls are found to be monomorphic, and in most cases, property
reads and writes occur on known single objects. This is encouraging because
both of these statistics are likely close to the theoretical maximum obtainable.
We observe that the inference of property writes is better than that of property
reads. This is likely because most property writes occur during the initialization
of objects, near the object’s creation site.

One of the areas where our analysis fares less well is that of arithmetic and
comparison operations. In one specific benchmark (access-binary-trees), the
analysis can only determine that a small fraction of these operations operate
on integers, when in fact, it is easy to see that in practice, 100% of the values
involved are integers. We believe this weakness occurs because the analysis of
arithmetic operations is easily contaminated by undefined values.

In the case where one input to a multiplication operation may be undefined,
we have that the output may be NaN. Subsequent operations using this re-
sult might also then produce NaN. Such erroneous values can easily propagate
through large parts of a program being analyzed. As such, it is critical for
the analysis to be able to eliminate as much superfluous undefined values as
possible.

It is interesting to note, looking at our results, that in a few cases, we can
determine branch directions ahead of time. This is no mistake. These cases
correspond to sanity checks in the benchmark program which would throw ex-
ceptions in case of error. Our analysis is able to determine that these exceptions
will never be thrown, and that these sanity checks are dead code.

5 Future Work

The most important problem with our current type analysis design is its poor
scalability. We would like to make it possible for our analysis to scale up to
a level where it can analyze the entirety of the Tachyon JavaScript compiler
codebase[4] (approximately 80K lines of JavaScript code) within a few minutes
of computation time on a modern PC. Making this possible will undoubtedly
require important design changes.

We hope to find ways to make the analysis more scalable while also improving
its overall precision. It seems fairly clear that the current design is rather
wasteful. Type sets are propagated to regions of programs that do not make
use of these. Type graphs are stored for every basic block, but these remain
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largely unchanged between adjacent blocks, and much redundant information is
stored.

The subsections below outline multiple areas which we believe are worth
investigating to reduce the cost of our type analysis.

5.1 Lazy Propagation

As observed by Jensen et al., näıve path-sensitive analyses will propagate infor-
mation to areas of programs which do not make use of it[8]. In the case of our
analysis, the type sets of the properties of all previously encountered objects will
be propagated. One possible solution to this is to propagate the type sets lazily,
or on-demand. This is to say, type sets get propagated to successor blocks only
when the analysis requires information about the type sets along that path.

In this way, it is possible to completely avoid propagating most object prop-
erties (including global variables) to most functions. Only the type sets used by
a function or its callees need to enter the said function. A proper implementa-
tion of such a mechanism can also help improve the analysis precision in some
cases. It so happens that propagating type sets to functions indiscriminantly
contributes to polluting dataflow information (see Listing 2). This is because
type sets are typically merged at the exit of function calls. Thus, not propagat-
ing unused type sets to a function will potentially avoid merging multiple type
sets for a given variable when that variable is not even used in the said function.

Listing 2: Global Object Pollution
1
2 // foo is an empty function
3 function foo() {}
4
5 // the global variable n is implicitly undefined here
6
7 foo();
8
9 var n = 1;

10
11 // n is known to be 1 at this point
12
13 foo();
14
15 // n is inferred to be either 1 or undefined at this point

5.2 Selective Path-Sensitivity

Path-sensitivity is useful in order to be able to perform strong updates effec-
tively, but it is very costly to implement. It is interesting to note that we only
perform strong updates on singleton object sets. This suggests that general
path-sensitivity applied to all object properties at every program point is prob-
ably unnecessary for our purposes. Instead, it may be advantageous to restrict
our analysis to be path-sensitive for properties of objects that are only part of
singleton sets.
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Another possible approach would be to reduce path-sensitivity further. Our
main use for it is to analyze the initialization of objects so that we can eliminate
superfluous undefined values. However, once we know that a property cannot
contain undefined, it may not be so useful to analyze this property in a path-
sensitivite manner further along. The type set of this property could then be
demoted to a summary type that is analyzed in a flow-insensitive manner. This
bears some similarity to the concept of recenty types[3].

The current design of our type analysis not only analyzes object properties
in a flow-sensitive manner, but local variables as well, so that their types can
be narrowed based on branch tests. Should we alter the design of the analysis
so that some variables and properties can selectively be analyzed without flow-
sensitivity, it may be advantageous to make it so that most local variables are
analyzed without it.

5.3 Type Lattice Depth

The hierarchy of type sets in our analysis can be described as a lattice built on
the subset relationship. The original paper describing the SCCP analysis[12] ex-
plains that this analyses uses a three-level lattice where all constants sit between
the top and bottom elements. This design was selected because it guarantees
rapid convergence properties. The value inferred for an SSA temporary can only
move up the lattice twice, and so a given instruction can provoke updates by
changing its output at most twice.

In our current analysis design, we have chosen to support not only integer
constants, but also integer ranges. When an integer range is extended upwards
to have an upper bound of m, its upper bound moves to 2n − 1 such that n
is the least integer with m ≤ 2n − 1. We allow this extension up to 216 − 1.
This means there can easily be up to 15 range extension steps when inferring
the range of a loop index variable. This causes many re-evaluations of the loop
body and surrounding basic blocks. The situation can be compounded in the
case of nested loops. This cost could be mitigated by the use of a type-flow
graph (see Section 5.4).

Another possibility would be to redesign the range inference mechanism
used. In terms of optimization, what we most care about is knowing whether
an integer value is non-negative and whether it can fit within a machine integer
range (e.g.: a signed or unsigned 32-bit integer). Being able to infer precise
ranges in between is probably not all that useful. Hence, we could redesign our
range system to infer either an exact bound, or the maximum value allowable by
signed and unsigned 32-bit integers. This would allow integer ranges to reach a
fixed-point much quicker.

5.4 Type Flow Graph

Our type analysis implementation is currently an abstract interpreter which
iterates over instructions of basic blocks sequentially while updating type graph
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data structures for each basic block. This is inefficient because during a fixed-
point computation, a given basic block may be re-evaluated each time a type
set flowing through it changes. This implies re-evaluating each instruction in
the block, even if none of them touch the modified type set. Further overhead is
incurred because manipulating type graphs implies many lookups and updates
on complex data structures.

It may be possible to implement the core of the type analysis more efficiently
by taking inspiration from Sparse Conditional Constant Propagation (SCCP).
The SCCP analysis[12] is a constant propagation analysis on the SSA interme-
diate representation. It performs a fixed-point on dataflow edges rather than
iterating on individual instructions in order, yielding a more efficient algorithm.

In the case of our type analysis, type flow edges do not directly correspond to
def-use edges between SSA temporaries and instructions. This is because some
variables can change type at uses, after definition, while object properties are
not directly represented in the SSA IR. We could conceivably, however, build a
type flow graph that would represent the flow of type sets between instructions.
This would allow us to perform abstract interpretation more efficiently while
doing away with the time and memory overhead associated with type graphs.

We believe that such an approach could yield much faster convergence while
at the same time reducing the memory usage of the analysis to the point where
it almost linearly scales with the program size. Another interesting advantage is
that the construction of the type flow graph could be made to elegantly integrate
with lazy propagation (see Section 5.1). All that is required for this is to allocate
type flow edges so that they do not flow into function calls that do not make
use of the types they represent.

6 Conclusion

We have presented a static inteprocedural type analysis for JavaScript based
on the forward dataflow paradigm. This analysis is flow-sensitive and path-
sensitive. Its main focus is to maximize the precision obtained on the analysis
of object property types, as objects are a central aspect of JavaScript and its
performance characteristics. Although the running time of our analysis cur-
rently makes it prohibitive for use in a JIT compiler, the results obtained so far
are encouraging and lead us to believe that the analysis has potential for offline
optimization of JavaScript code.

The current design of our analysis suffers from scalability issues. We remain
confident that these can be fixed and have outlined multiple approaches for
doing so. The most promising approach involves the reimplementation of the
analysis to use a type flow graph data structure so that its memory usage is
reduced and its convergence speed improved. We believe that implementing
this approach could potentially reduce the footprint of our analysis by orders of
magnitude while retaining most of its benefits.
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