
Photon: an open, extensible and native
implementation of JavaScript

Erick Lavoie, Marc Feeley, Bruno Dufour
Université de Montréal

{lavoeric, feeley, dufour}@iro.umontreal.ca

Abstract
This is the text of the abstract.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, optimization, code generation,
run-time environments

General Terms Algorithms, Performance, Design, Languages

Keywords JavaScript, virtual machine, compiler, self-hosted, op-
timization, implementation, bootstrap

1. Use Cases
1.1 Extending the object model

The next version of the JS standard, nicknamed Harmony, intro-
duces native support for associative table, which they call Map. To
avoid confusion with the meta-objects in Photon, we distinguish
them by using an uppercase M for the associative table name and a
lowercase m for the meta-objects.

Providing native support brings a performance advantage by
allowing the implementation to heavily optimize the operations of
the new object type. In this use case, we show that our system is
both able to profit from a direct access to memory to implement
native types and reuse much of the existing system to simplify the
introduction of user-defined native types.

For simplicity of presentation, we use an implementation that
performs a linear search for every Map operation. We compare an
implementation done in regular JS with a native implementation
done using extensions presented in previous sections. The regular
JS implementation is given at figure 1. It uses two arrays to store
keys and values. The native implementation is given at figure 2.
It uses the payload section of the object to store the number of
entries in the table and the entries themselves. Doing so eliminates
a level of indirection. Comparing the time required to perform 2000
times each of the set,get,has and delete operations shows a 140%
slowdown between the regular and the native implementation. The
running times are given at table 1.

Additional considerations are required for a native implemen-
tation. First, extension of the object is necessary once the payload
section is full. This is done by creating a clone of the current ob-
ject with a bigger payload section and updating the extension slot

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH 2012 October 19-26, 2012, Tucson, Arizona, USA
Copyright c© 2012 ACM [to be supplied]. . . $10.00

Implementation Photon (s) Slowdown
Regular JS Map 2.6 1.4
Extended JS Map 1.8 1.0

Table 1. Running times (in seconds) of different implementations
of the Map object

of the original object. Every operation on the object then needs
to retrieve the extended object before performing the actual oper-
ation. Second, the object protocol must be followed. In this case,
a new default method is necessary for correct behavior with
the new operator. Third, implementation invariants need to be main-
tained. In this case, the inline cache implementation requires a com-
mon map for all objects created from the prototype. This is achieved
by creating a new map and assigning it to the base map property
of the prototype object.

Some things are provided for free. For example, the extensible
object model provides the regular object behavior without requiring
any additional code for the native implementation.

Comparing the two implementations shows that direct memory
manipulation and additional considerations take twice the number
of lines of code for an equivalent native implementation, to prove a
30% speedup.

1.2 Profiling the runtime behavior

The runtime profile of a JS program is currently laborious to obtain.
The common approach is to instrument an existing implementation
with various hooks to record runtime events. The major problem
with this approach is that all implementations running in browsers
have been heavily optimized for performance with no concern
about instrumentation.

The existence of an object protocol allows a much easier way to
instrument running programs. Additionally, the ability to dynami-
cally modify the behavior of the system makes it possible to profile
the running behavior for a part of the execution instead of having
to choose between profiling for the whole execution or no profiling
at all.

The following example shows how the number of regular ob-
jects created during execution can be obtained and how the instru-
mentation code can be removed once it is no longer needed. The
example code is given at figure 3. Running this example shows that
3006 regular objects were created for performing the evaluation
of 1 + 2. After reverting the method, the original behavior is re-
stored. All the instrumentation performed is compatible with the
inline cache behavior. Note that responsability for avoiding recur-
sion in the implemenation of object-protocol methods is left on the
programmers shoulders. Knowledge of the code generated by the
compiler is necessary for that purpose. In our opinion, the simplic-
ity of the compilation model makes it reasonably straightforward.

f unc t i on Map () {
var t h a t = t h i s ;
t h a t . k ey s = [] ;
t h a t . v a l s = [] ;

re turn t h a t ;
}

(f unc t i on () {
f unc t i on indexOf (keys , key) {

var l e n g t h = keys . l e n g t h ;
f o r (var i = 0 ; i < l e n g t h ; ++ i)

i f (keys [i] === key) re turn i ;
re turn −1;

}

Map . p r o t o t y p e . g e t = f unc t i on (k) {
var i = indexOf (t h i s . keys , k) ;
i f (i >= 0) re turn t h i s . v a l s [i] ;
e l s e return undef ined ;

} ;

Map . p r o t o t y p e . has = f unc t i on (k) {
re turn indexOf (t h i s . keys , k) >= 0 ;

} ;

Map . p r o t o t y p e . s e t = f unc t i on (k , v) {
var i = indexOf (t h i s . keys , k) ;
i f (i >= 0) re turn t h i s . v a l s [i] = v ;

var keys = t h i s . k ey s ;
var l = keys . l e n g t h ;
keys [l] = k ;
t h i s . v a l s [l] = v ;
re turn v ;

} ;

Map . p r o t o t y p e . d e l e t e = f unc t i on (k) {
var i = indexOf (t h i s . keys , k) ;
i f (i < 0) re turn f a l s e ;

var keys = t h i s . k ey s ;
var l a s t = keys . l e ng t h −1;
var v a l s = t h i s . v a l s ;

i f (i !== l a s t) {
keys [i] = keys [l a s t] ;
v a l s [i] = v a l s [l a s t] ;

}

keys . l e ng t h −−;
v a l s . l e ng t h −−;
re turn true ;

} ;
}) () ;

Figure 1. Regular JS Map implementation

1.3 Profiling compile-time information

Obtaining compile-time information is generally easier than run-
time information. The common approach is to use or write a parser
for the language and then reason on a defined representation. How-
ever some information, such as the number of a given operation
generated by the compiler is compiler-dependent and harder to ob-
tain since it depends on the optimizations performed.

Being able to intercede on a compiler’s behavior permits the
reuse of much of the infrastructure of the compiler to obtain
compile-time information and it provides direct information on the
actual compiler’s behavior. The example given at figure 4 shows
how to obtain the number and nature of message sends generated
by the compiler for a given piece of code.

Again, since intercession on the compiler’s behavior is done at
runtime it is also possible to remove the cost of profiling when it is
no longer needed without having to restart the program.

1.4 Changing the language being compiled

This use case explores the redefinition of a part of the compiler at
runtime to support different syntaxes or semantics. The system al-
lows completely replacing the existing compiler with a new one.
For example, that could be used to provide better runtime perfor-
mance for compiled code or to support a different language.

In this case, we chose to add support for a lisp dialect that
uses most of the keywords and semantics of the JS language. Such
an extension could allow support for syntax macros that would
effectively bring syntactic extensibility to JS.

To keep reusing our beloved Fibonacci example again, an exam-
ple of the syntax is given at figure 5. This is pretty much Scheme
code with the exception that the var keyword is used to define
global variables instead of define and the function keyword is
used to define anonymous functions instead of lambda.

The implementation uses 114 lines of OMeta code to define
a parser and scanner. Since the original parser is exposed on the
global object, rebinding its value to the new parser effectively
changes the syntax system-wide dynamically. After this change, the
system can be serialized again to provide a stand-alone executable
VM that understands a JS lisp-inspired dialect.

2. Empirical Evaluation
We perform an empirical evaluation of the resulting system to
show that it is pratical as an exploration vehicle for implementation
techniques. We first show that our current implementation is simple
as mesured by the number of lines of code of the complete system.
We then show that the implementation is promising in terms of
performance.

2.1 Complexity

We use the total number of lines of code as a proxy for the complex-
ity of the resulting system. To mitigate the effect of writing style, all
the JS source code is subject to a source-to-source translation which
removes all the comments and uniformize the writing style. The re-
sulting output was chosen to approximate a hand-written coding
style. For example, control statements always use curly-braces and
if and else branches are written on different lines.

The system is written in OMeta, JS and C code. All the OMeta
code is compiled to JS. The code required to compile the OMeta
code is included in the total number of source lines of code (SLOC).
The OMeta compiler is itself written in OMeta. The breakdown for
SLOC is given at table 2. An interesting thing to notice is the effect
of meta-circularity on the SLOC number. Since OMeta is meta-
circular, the OMeta runtime used to generate the Photon Compiler
is the same as the one used by the Photon Compiler to compile
JS code. Similarly, the JS runtime used by the Photon Compiler is
the same as the one used by JS code to execute. That code would
have been duplicated if those runtimes had not been shared. A
second interesting thing to notice is the fact that almost a fourth
of the SLOC are written in C. Of those, two-thirds are runtime
methods for objects and the rest concern bootstrap, serialization
and initialization tasks. In the future, we expect to reduce the
amount of C code as more of the runtime functionalities will be
expressed only as JS code.

We used OMeta code to drastically reduce the number of lines
of code to write and modify. As shown in table 3, for the Photon
Compiler we gain a factor of 6 in expressivity compared to hav-
ing written the same OMeta code by hand. The main gain was ob-
tained through the concise notation for pattern-matching on arrays
afforded by OMeta.

Since we needed extensions to JS for writing some of the VM
components, it begs the question of what proportion of the VM
was written using only regular JS code. This figure is interesting

Category SLOC %
OMeta Compiler(OMeta) 500
OMeta Runtime (JS) 1000
Photon Compiler (OMeta+JS) 5000
Photon Optimizer (OMeta+JS) 500
Runtime (JS) 3200
Runtime (C) 2000
Bootstrap, Serialization, etc. (C) 1000
V8 Integration (C) 200
Total 13400 100

Table 2. Source lines of code breakdown by component

Category OMeta SLOC JS SLOC Expansion factor
OMeta Compiler 500 5000 10.0
Photon Compiler 1100 7200 6.5
Photon Optimizer 10 60 6.0
Total 1610 12260 7.6

Table 3. Expansion factor for OMeta code

because it gives a rough approximation of the amount of JS code
that can be reused should the object representation or the extension
syntax changes. If we also count the OMeta code, also compiled to
regular JS, table 4 shows that 65% of the total code could be reused
should the internal design of the VM changes. Let’s note however
that assumptions semantically encoded in regular JS code are not
apparent here but we can say from experience that these represent
a small part in terms of SLOC.

Category SLOC %
OMeta 1600 12
Regular JS 7100 53
Extended JS 1500 11
C 3200 24
Total 13400 100

Table 4. Proportion source lines of code by language

Comparison to one of our previous attempts at a JavaScript
meta-circular VM[1] shows a reduction of a factor of 5 in terms
of lines of code (13.4KLOC vs 75KLOC). The reduction in the
SLOC number can mostly be attributed to the usage of OMeta
as well as the elimination of the SSA representation and register
allocator. Comparison to V8 shows a factor of 28 (13.4KLOC vs
375KLOC) although to be fair, V8 provides a complete support for
JS and backends for x86 32-bit and 64-bit as well as ARM. Using
the SLOC number as a proxy shows that Photon is a much simpler
system than other alternatives.

2.2 Performance

Performance was not the focus of the current implementation. We
still compare our system to a state-of-the-art implementation to pro-
vide ballpark figures of its current performance. We show execu-
tion times for common sunspider benchmarks as well as v8-hosted
and self-hosted compilation time. We then give explanations for
the current bottlenecks and we propose implementation strategies
to remove them.

All the numbers were obtained on an early 2011 MacBook Pro
running OS X Lion 10.7.3 with a 2.2 GHz Intel Core i7 and 8 GB
of memory. Both our system and d8 were compiled for x86 32-bit.
We used revision 7928 of d8 and the 0.9.1 sunspider benchmarks.

Since our system does not support equality comparison (==),
those were converted to identity comparisons (===). Code executing
in the global environment was also put in a function to permit

serialization of the compiled code when running inside Photon. It
was done to avoid compilation when running tests. The same code
is used for tests both on V8 and Photon. Those two modifications
did not significantly affect the running time on V8.

2.2.1 Execution Time

We show some sunspider benchmarks results. As a reminder, we do
not optimize constant arithmetic operations, every local variable is
accessed on the stack and we follow the 32-bit calling conventions
of C. Given these, the results look promising, since there is a lot of
room for improvement using known techniques.

Two variations of some tests are introduced to illustrate the
current bottlenecks of Photon. In the first one, we removed the
string creation in the access-fannkuch.js benchmark. The resulting
string was not used in the benchmarks, therefore it does not change
the algorithm. We label the modified benchmark with (no string).
In the second one, we replace the new operation in access-binary-
tree.js with an internal cloning operation of a representant object
with all the expected properties. We label the modified benchmark
with (cloning). This benchmark cannot be run on V8 anymore, we
therefore compare the running time on Photon with the original
running time on V8.

Table 5 shows the relative speed of Photon and V8. We compare
the speed of our system using inline caches (ic) to the speed of V8.
This simple implementation strategy brings our system within a
factor of 3 of V8 on a function call intensive benchmark such as
controlflow-recursive.js. Our system is within a factor of 14 of V8
if we do not consider the two degenerated cases.

Test Name Photon (ic) V8 Slowdown
controlflow-recursive.js 1.845 0.584 3.16
access-nsieve.js 3.427 0.542 6.32
access-fannkuch.js 89.417 1.835 48.72
access-fannkuch.js (no string) 18.389 1.804 10.19
access-binary-tree.js 58.940 0.360 163.72
access-binary-tree.js (cloning) 5.000 - 13.88

Table 5. Execution time for 400 iterations of some sunspider
benchmarks (seconds)

The two slowest running times can be explained as follow. Dur-
ing the original fannkuch benchmark, a linear search is performed
for string internalization each time a string is created, making the
running time proportional to the number of strings in the system.
During the original binary tree benchmark, the creation of an object
within Photon performs an introspective search on the prototype to
find an existing base map as a JS property to maintain the inline
cache invariants. Potential solutions to these two problems will be
addressed in the discussion section.

Table 6 shows the effect of inline caches on execution time.
Given the pervasive use of message sends in the object model
implementation to late-bind object behavior, it is of little surprise
that inline caches (ic) give a huge boost to performance. When not
using them (noic) the system is between 4 and 51 times slower.

Test Name Photon (noic) Photon (ic) Slowdown
controlflow-recursive.js 4.606 0.195 23.62
access-nsieve.js 17.716 0.346 51.20
access-fannkuch.js 84.504 9.079 9.30
access-fannkuch.js (no string) 78.079 1.835 42.55
access-binary-tree.js 23.428 5.973 3.92
access-binary-tree.js (cloning) 15.613 0.507 30.79

Table 6. Execution time for 40 iterations of some sunspider bench-
marks (seconds)

2.2.2 Compilation Time

Table 7 gives the compilation time for two of the precedent bench-
marks. It shows a factor of 100 between the self-hosted and the
v8-hosted version. From the result given in the previous section,
we believe this is mostly caused by the speed of the object creation
protocol.

Additionally, bootstrapping the current system on V8 currently
takes around 30 seconds. Given the slowdown factor when per-
forming self-hosted compilation, we did not attempt a self-hosted
bootstrap.

Test Name Photon (ic) Photon (noic) Photon/V8
controlflow-recursive.js 10.780 8.858 0.085
access-nsieve.js 10.022 8.103 0.078
Total

Table 7. Compilation Time for some benchmarks (seconds)

Table 8 gives the relative compilation time for each compilation
phase. When v8-hosted compilation is done, parsing dominates the
compilation time. However, when self-hosted compilation is per-
formed, code generation is dominating by a factor of 10 over pars-
ing. We believe this is also because the object creation protocol
is slow. Usage of inline caches actually negatively impact perfor-
mance because more objects are created during code generation.

Phase Photon (ic) Photon (noic) Photon/V8
Parsing 9 11 48
Macro Expansion 0 0 2
Desugaring 0 0 2
Variable Analysis 0 0 2
Variable Scope Binding 0 0 4
Optimization 0 0 4
Code Generation 87 86 33

Table 8. Compilation Time Breakdown in % for controlflow-
recursive.js

2.2.3 Discussion

Both execution time and compilation time performance are deter-
mined mostly by the limited time we had to optimize the imple-
mentation, not by limitations in the design. We provide here pos-
sible solutions to the problems identified and we show that with
reasonable efforts the system could be made pratically fast.

The previous results indicate that object creation and string in-
ternalization are major bottlenecks of the current implementation.
Object creation could be sped up using a caching strategy for the
initial creation of the object and subsequently for the field initial-
ization. String internalization can be made amortised constant time
instead of linear time by using a hash map. Those two problems
will be addressed in the near future since the implementation effort
required is minimal.

Once all the common object model operations will be appro-
priately cached, the next step to reduce the execution performance
gap between V8 and our system will be to provide optimized in-
structions for constant arithmetic operations and combine test in if
expressions with the code generated for the conditional branching.
This should also mitigate the absence of a register allocator by pre-
venting access to the stack for binary operations with a constant.

Compilation time can be reduced by preencoding patterns of in-
structions for each corresponding AST node. Encoding is currently
performed by making calls to the in-memory assembler for each
instruction to encode. Encoding currently allocates many objects in
the heap. Preencoded patterns could be exposed as functions that

would patch values in a array mostly composed of integers. This
will reduce self-hosted and v8-hosted compilation time since the
number of created objects will be drastically reduced.

The compilation time breakdown for v8-hosted compilation
shows that parsing is the dominant factor time-wise, followed
closely by code generation. Further inquiry in the runtime behav-
ior of OMeta grammars will be needed to see if this is something
that could be optimized with changes to the grammar or with a
more sophisticated OMeta compiler or if limitations in the design
of OMeta would prevent such optimizations.

2.3 Experience Report

This experience taught us that bootstrapping a new self-hosted
system is a compromise between simplicity of implementation
and performance of the resulting system. Although our current
implementation is too slow to serve for its own bootstrap, being
able to bootstrap the system on V8 in 30 seconds allows fast
experiments to be made to determine the origin of performance
bottlenecks. Our previous experience with Tachyon was that 3 to 8
minutes were required for bootstrap, drastically reducing the speed
at which experiments could be performed. In our opinion, this was
mostly caused by the size of the code base and the really rich
internal representation used to represent code, which required a
huge number of objects to be allocated.

This suggests that when bootstrapping a self-hosted system, the
first thing to do is to keep the implementation as simple as pos-
sible to minimize the quantity of code to compile. Bootstrapping
time can be minimized by borrowing performance from existing
optimized implementations, in our case, the V8 implementation for
compiling the system and the C compiler to provide method behav-
ior for objects. Should an existing optimized implementation did
not exist, a fast compiler could be written in C. Compilation time
can then be reduced by optimizing the bootstrap compiler. In our
case, it is the same as the self-hosted compiler so this optimization
benefits both. Once boostrap is near instantaneous, experiments can
be performed to find and address performance bottlenecks until pe-
formance becomes a non-issue for all common development tasks.

For future work on Photon, the first thing to optimize would
be the compilation speed on V8 by reducing the number of ob-
jects created, then addressing the speed bottlenecks introduced by
OMeta until the bootstrap on V8 is near instantaneous. The next
thing to optimize will be the self-hosted compilation speed until it
is also near instaneous for incremental modification of the live sys-
tem. That will allow fast experiment to be made until self-hosted
bootstrap is near instantaneous. At that time, the system will be
truly independent of existing implementations and free to evolve
by itself to explore different implementation strategies. Boostrap-
ping speed will not be a limiting factor in the exploration of VM
implementation.

Acknowledgments
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Fonds
Québécois de la Recherche sur la Nature et les Technologies
(FQRNT) and Mozilla Corporation.

A. Appendix
A.1 JavaScript reserved properties

big table with all the reserved properties

References
[1] M. Chevalier-Boisvert, E. Lavoie, M. Feeley, and B. Dufour. Bootstrap-

ping a self-hosted research virtual machine for javascript: an experience

report. In Proceedings of the 7th symposium on Dynamic languages,
DLS ’11, pages 61–72, New York, NY, USA, 2011. ACM.

f unc t i on Map () {
re turn t h i s ;

}

(f unc t i on () {
f unc t i on indexOf (m, key) {

var l e n g t h = m[@ l e n g t h o f f s e t] ∗ 2 ;
f o r (var i = f i r s t e n t r y o f f s e t ; i < l e n g t h ; i += 2)

i f (m[@i] === key) re turn i ;
re turn −1;

}
f unc t i on c a p a c i t y (m) {

re turn (m[@−3]/ s i z e o f r e f − f i r s t e n t r y o f f s e t) / e n t r y s i z e ;
}
f unc t i on p a y l o a d s i z e (c a p a c i t y) {

re turn (c a p a c i t y ∗ e n t r y s i z e + f i r s t e n t r y o f f s e t)∗ s i z e o f r e f ;
}
f unc t i on ex t end (m, cap) {

var t h a t = m[@−5];
var copy = t h a t . c l o n e (p a y l o a d s i z e (cap)) ;
var l e n g t h = t h a t [@−3] / s i z e o f r e f ;

f o r (var i = 0 ; i < l e n g t h ; ++ i)
copy [@i] = t h a t [@i] ;

m[@−5] = copy ;
re turn copy ;

}

var l e n g t h o f f s e t = 0 ;
var f i r s t e n t r y o f f s e t = l e n g t h o f f s e t + 1 ;
var i n i t n b = 10 ;
var e n t r y s i z e = 2 ;
var s i z e o f r e f = t h i s . r e f s i z e () ;
var i n i t p a y l o a d = p a y l o a d s i z e (i n i t n b) ;

Map . p r o t o t y p e = Map . p r o t o t y p e . c l o n e (
(f i r s t e n t r y o f f s e t + e n t r y s i z e)∗ s i z e o f r e f

) ;
Map . p r o t o t y p e [@0] = 0 ;

Map . p r o t o t y p e . n ew = f unc t i on () {
var t h a t = t h i s . i n i t (0 , i n i t p a y l o a d) ;
t h a t [@−1] = t h i s . b a s e m a p ;
t h a t [@−2] = t h i s ;
t h a t [@ l e n g t h o f f s e t] = 0 ;
re turn t h a t ;

}

Map . p r o t o t y p e . n e w d e f a u l t = Map . p r o t o t y p e . n ew ;
Map . p r o t o t y p e . b a s e m a p = Map . p r o t o t y p e [@−1] . n ew () ;

Map . p r o t o t y p e . g e t = f unc t i on (k) {
var t h a t = t h i s [@−5];
var i = indexOf (t h a t , k) ;
i f (i >= 0) re turn t h a t [@i + 1] ;
e l s e return undef ined ;

} ;

Map . p r o t o t y p e . has = f unc t i on (k) {
re turn indexOf (t h i s [@−5] , k) >= 0 ;

} ;

Map . p r o t o t y p e . s e t = f unc t i on (k , v) {
var t h a t = t h i s [@−5];
var i = indexOf (t h a t , k) ;

i f (i >= 0) re turn t h a t [@i+1] = v ;

var l e n g t h = t h a t [@ l e n g t h o f f s e t] ;
var cap = c a p a c i t y (t h a t) ;

i f (l e n g t h === cap) t h a t = ex t end (t h i s , 2∗ cap) ;

var i = 2∗ l e n g t h + f i r s t e n t r y o f f s e t ;
t h a t [@i] = k ;
t h a t [@i + 1] = v ;
t h a t [@ l e n g t h o f f s e t]++ ;
re turn v ;

} ;

Map . p r o t o t y p e . d e l e t e = f unc t i on (k) {
var t h a t = t h i s [@−5];
var i = indexOf (t h a t , k) ;
i f (i < 0) re turn f a l s e ;

var l e n g t h = t h a t [@ l e n g t h o f f s e t] ;
var l a s t = 2∗ (l e ng t h −1)+ f i r s t e n t r y o f f s e t ;

i f (i !== l a s t) {
t h a t [@i] = t h a t [@las t] ;
t h a t [@i+1] = t h a t [@las t + 1] ;

}

t h a t [@ l e n g t h o f f s e t]−−;
re turn true ;

} ;
}) () ;

Figure 2. Extended JS Map implementation

var count , r e s e t ;

f unc t i on i n s t r (f) {
var c o u n t e r = 0 ;

var g = f unc t i on () {
c o u n t e r ++;
re turn f . c a l l (t h i s) ;

} ;

r e v e r t = f unc t i on () {
re turn f ;

} ;

c oun t = f unc t i on () {
re turn c o u n t e r ;

} ;

re turn g ;
}

Ob j e c t . p r o t o t y p e . n ew = i n s t r (
Ob j e c t . p r o t o t y p e . n ew

) ;
e v a l (” 1+2”) ;
p r i n t (” Ob j e c t . p r o t o t y p e . n ew c a l l e d ”

+ coun t () + ” t ime s ”) ;
Ob j e c t . p r o t o t y p e . n ew = r e v e r t () ;
o = {} ;

Figure 3. Dynamic profile of the number of regular objects created

var r e v e r t ;

f unc t i on i n s t r g e n s e n d (f)
{

var g = f unc t i on (nb , rcv , msg , a rgs , b i n d h e l p e r)
{

p r i n t (” G e n e r a t i n g send ’ ” + msg + ” ’ ”) ;
re turn f . c a l l (t h i s , nb , rcv , msg , a rgs , b i n d h e l p e r) ;

}

r e v e r t = f unc t i on ()
{

re turn f ;
} ;

re turn g ;
}
Pho tonCompi le r . c o n t e x t . g en send = i n s t r g e n s e n d (

Pho tonCompi le r . c o n t e x t . g en send
) ;
e v a l (” f u n c t i o n f i b (n) {” +

” i f (n<2) r e t u r n n ; ” +
” r e t u r n f i b (n−1)+ f i b (n−2); ” +

”}”) ;
p r i n t (f i b (1 0)) ;
Pho tonCompi le r . c o n t e x t . g en send = r e v e r t () ;

Figure 4. Static profile of message sends generated

(var f i b (f unc t i on (n)
(i f (< n 2)

n
(+ (f i b (− n 1)) (f i b (− n 2))))))

(p r i n t (f i b 4 0))

Figure 5. Lisp-inspired syntax example for JS

