
Efficient Compilation of Tail Calls
and Continuations to JavaScript

Eric Thivierge Marc Feeley
Université de Montréal
feeley@iro.umontreal.ca

Abstract
This paper describes an approach for compiling Scheme’s tail calls
and first-class continuations to other dynamic languages without
those features, with a focus on JavaScript. Our approach is based
on the use of a custom virtual machine intermediate representa-
tion which is translated to the target language. We compare this
approach, which is used by the Gambit-JS compiler, to the Replay-
C algorithm, used by Scheme2JS (a derivative of Bigloo), and CPS
conversion, used by Spock (a derivative of Chicken). We analyse
the performance of the three approaches with a set of benchmark
programs. Our approach is consistently faster than the others on
the benchmark programs, and up to two orders of magnitude faster
when first-class continuations are used intensively.

Keywords Continuation, tail call, Scheme, JavaScript, trampo-
line, virtual machine

1. Introduction
There is an increasing trend in implementing programming lan-
guages as compilers to other high-level programming languages.
Such a compiler gives increased portability, allowing the source
language to execute wherever the target language can be executed,
it gives more direct access to the features available in the target
language (libraries, tools, etc), and it makes it easier to integrate
program parts written in the source language with an existing code
base in the target language. Some of the more popular target lan-
guages are C, C++ and Java, or more specifically the JVM byte-
code. Recently, JavaScript has also become a popular target due
to the unique role it plays in web browsers and web applications.
Currently, there are over 50 compilers [2] targetting JavaScript, in-
cluding compilers whose source language is C, C++, Java, Python,
Haskell, and Scheme.

Using a popular dynamic language such as JavaScript, Python
and Ruby as the target language for a Scheme compiler is al-
luring because they offer dynamic typing, introspective features,
closures and garbage collection which simplify the translation of
Scheme which also has those features. The biggest challenge re-
maining is the implementation of tail calls and first-class continu-
ations which have no direct equivalent in the general case in these

[Copyright notice will appear here once ’preprint’ option is removed.]

target languages. The support for first-class continuations, and in
particular serializable continuations, is a useful feature for imple-
menting continuation based web frameworks, distributed program-
ming languages supporting process migration (e.g. Termite [9]),
and threaded applications. By targetting JavaScript, such applica-
tions could also execute in web browsers.

A Scheme system which conforms to the standard must imple-
ment tail calls without stack growth, and it must implement the
call/cc predefined procedure which captures implicit continua-
tions so that they can be invoked explicitly, possibly multiple times.
Because of the complexity and run-time cost of implementing these
features in a high-level target language, some systems reduce their
generality by default (for example only transforming self tail calls
using loops, and one-shot escape continuations using exceptions),
and support the full generality only through special compilation
options.

Various approaches for implementing these features in their full
generality have been used in Scheme compilers targetting high-
level languages such as the Bigloo [14], Chicken [1] and Gambit-
C [7] Scheme to C compilers, and the Scheme2JS [13] [12] [11],
Spock [3], and Whalesong [15] Scheme to JavaScript compilers.

Tail calls can be implemented with trampolines to avoid stack
growth when one function jumps to another function. Trampolines
are used in Scheme2JS and Gambit-C.

The approach used by Chicken, Spock, and Whalesong, known
as Cheney on the MTA [4], implements tail calls with normal calls
and uses a non-local escape mechanism, such as throw/catch or
C’s setjmp/longjmp, at appropriate moments to reclaim the use-
less stack frames in bulk (recent versions of Spock unwind the stack
using a cascade of simple function returns to avoid compatibility
issues with some browsers). The Cheney on the MTA approach
is normally combined with a CPS conversion of the code so that
all stack frames can be reclaimed. Indeed all calls are tail calls in
the CPS’ed code. As an interesting side-effect, the implementation
of first-class continuations is greatly simplified since all translated
functions receive an explicit continuation function.

In Scheme2JS, first-class continuations are implemented by
copying the stack frames to the heap. In a high-level language
like JavaScript where the stack can’t be accessed directly, excep-
tions can be used to visit the stack frames iteratively (from newest
to oldest) to build a copy in the heap and reclaim the stack frames.
The code generated for functions is structured in such a way that
the original stack frames are recreated by a traversal of the copy in
the heap (in other words functions contain code to save their frames
and also recreate them, depending on whether a continuation is be-
ing captured or invoked). This is known as the Replay-C algorithm
in [12].

Gambit-C, which uses a virtual machine based intermediate lan-
guage, models the stack explicitly, as a C array, and consequently
could implement first-class continuations with most of the algo-

1 2012/8/16



rithms used by native code compilers [5]. A fine grained variant of
the Hieb-Dybvig-Bruggeman strategy [10] is used.

These approaches offer different tradeoffs. It is convenient to
consider as a baseline a direct translation of Scheme to the tar-
get language which ignores tail calls and first-class continuations,
and to look at the overhead over the baseline which results from
a particular approach. Being based on a CPS conversion, the Ch-
eney on the MTA approach makes first-class continuation capture
and invocation very fast, but it slows down non-tail calls due to
the overhead of creating the closure for the continuation, passing it
to the called function, and the added pressure on the garbage col-
lector. Scheme2JS is designed to favor programs with infrequent
first-class continuation operations. The Replay-C algorithm which
it uses has more work to do when first-class continuations are cap-
tured and invoked, for copying between the stack and heap. Pro-
grams which seldom capture and invoke continuations still have an
overhead for the try/catch forms which wrap all the non-tail calls,
but it is possibly less work than creating continuation closures and
garbage collecting them, which of course depends on the technol-
ogy used to implement the target language, which has evolved since
Scheme2JS’s creation. Modeling the stack explicitly as in Gambit-
C also has an overhead because accesses to source language vari-
ables are converted, in the general case, to target language array
indexing operations of the stack. All the approaches generate code
with a more complex structure than the baseline, which also causes
overhead because optimization by the target VM is hindered.

In this paper we will demonstrate that an approach for imple-
menting tail calls and first-class continuations which is based on a
virtual machine strikes a good balance between simplicity of imple-
mentation and performance. The JavaScript back-end we have de-
veloped for Gambit generates code which is faster than both Spock
and Scheme2JS, sometimes by over two orders of magnitude when
continuations are used extensively.

For simplicity, we will explain our approach using JavaScript as
the target language. The back-ends we have developed for Python
and Ruby are essentially the same, save for surface syntax, and we
will mention the main differences in Section 6.

2. Gambit Virtual Machine
The Gambit compiler front-end follows a fairly standard organiza-
tion as a pipeline of stages which parse the source code to construct
an AST, expand macros, apply various program transformations on
the AST (assignment conversion, lambda lifting, inlining, constant
folding, etc), translate the AST to a control flow graph (CFG), and
perform additional optimizations on the CFG. The front-end does
not perform a CPS conversion. Finally the target language specific
back-end converts the CFG to the target language.

2.1 Instruction Set
The CFG is a directed graph of basic blocks containing instructions
of a custom designed virtual machine [8], called the Gambit Virtual
Machine (GVM). The GVM is a simple machine with a set of lo-
cations in which any Scheme object can be stored: general purpose
registers (e.g. r2), a stack of frames (e.g. frame[2] is the second
slot of the topmost stack frame), and global variables. The front-
end will generate GVM code which respects the back-end specific
constraints, such as the number of available GVM registers, the
calling convention, and the set of inlinable Scheme primitives. In
the current back-ends, there are 5 GVM registers, and the calling
convention passes in registers the return address (in r0) and the last
3 arguments (in r1, r2, and r3).

There are seven GVM instructions: label, jump, ifjump, switch,
copy, apply, and close.

Each basic block begins with a label instruction which identifies
the basic block and indicates its kind. There are local blocks and

first-class blocks (plain function entry point, closure entry point,
function call return point). References to first-class blocks can be
stored in any GVM location.

The last instruction of a basic block is a branch instruction
which transfers control to another basic block, either uncondition-
ally (jump), or conditionally (ifjump or switch). Conditional and
unconditional branches can branch to local blocks. Only jump in-
structions can branch to first-class blocks. In general, function calls
are implemented with a jump instruction which indicates the argu-
ment count. The label instruction for the entry point indicates the
function’s number of parameters and whether or not there is a rest
parameter, allowing at function entry a dynamic check of the argu-
ment count and the creation of the rest parameter. Function calls
to known local functions without a rest parameter avoid the argu-
ment count check (they become jumps without argument count to
local blocks). Scheme’s if and case forms are respectively imple-
mented using the ifjump and switch instructions which branch to
one of multiple local blocks.

Data movement and primitive operations (e.g. cons) are respec-
tively performed with the copy and apply instructions. These in-
structions indicate the destination GVM location, and the source
operands, which can be any GVM location, immediate Scheme ob-
ject or reference to a first-class block.

Finally, the close instruction creates a group of one or more flat
closures. For each closure is specified the closure’s entry point,
the values of the closed variables, and the destination GVM lo-
cation where the closure reference is stored. Mutually referential
closures, which letrec can create, can be constructed because the
assignment to the destinations are conceptually performed after the
closures are allocated but before the content of the closure is ini-
tialized. A jump to a closure reference will transfer control to the
closure entry point contained in the closure and automatically store
the closure reference in the self register, which is the last GVM
register, i.e. r4, in the current back-ends. The closed variables are
accessed indirectly using the closure reference.

2.2 Stack Frame Management
The GVM does not expose a stack-pointer register, or push/pop in-
structions. The allocation and deallocation of stack frames is spec-
ified implicitly in the label and branch instructions. The label in-
struction indicates the topmost frame’s size immediately after it has
been executed. Similarly, the branch instruction at the end of the ba-
sic block indicates the frame size at the transfer of control. The dif-
ference between the exiting and entering frame sizes corresponds to
the amount of stack space allocated (or deallocated if the difference
is negative). The back-end can generate a single stack pointer ad-
justment at every GVM branch instruction. Moreover, the back-end
can use the entering stack frame size to calculate the offset to add
to the stack pointer to access a given stack slot, which are indexed
from the base of the frame.

Tail and non-tail calls must pass arguments to the called func-
tion on the stack and in registers. The arguments on the stack are
known as the activation frame. It is empty if few arguments are
passed. A continuation frame is created for non-tail calls to store
the values needed upon return from the call at the return point. The
continuation frame always contains the return address of the func-
tion which created the continuation frame.

When a GVM branch instruction corresponds to a tail call, the
topmost stack frame only contains the activation frame. In the case
of a non-tail call, the stack frame includes both the activation frame
and, below it, the continuation frame. When the branch corresponds
to a function return, the stack frame is empty.

In general, a runtime system for the GVM may use a limited size
memory area for allocating stack frames. This does not imply that
recursion depth is limited. Indeed, when the stack area overflows a

2 2012/8/16



new stack area could be allocated from the heap or the stack frames
it contains could be copied to the heap. Either way it is necessary
to detect these overflows and then call a stack overflow handler.

The GVM provides for this through the more general concept
of interrupt. An interrupt is an event, such as a stack area over-
flow, heap overflow, and preemptive multithreading timer interrupt,
which disrupts the normal sequence of execution. The GVM polls
for interrupts using interrupt checks which are spread throughout
the code. GVM branch instructions carrying a poll flag perform in-
terrupt checks. Before the transfer of control, the presence of an
interrupt is checked and an appropriate handler is called if an in-
terrupt is detected. Note that combining the poll operation with
the branch instruction provides some optimization opportunities:
the branch destination can be the destination of the target language
conditional branch in the case of an interrupt check failure.

The front-end guarantees that the frame size grows by at most
one slot per GVM instruction and also that the number of GVM in-
structions executed between poll points is bounded by the constant
L, the maximum poll latency (see [6] for details). Consequently, the
bounds of the stack area will never be exceeded if an extra L slots
are reserved at the end of the stack area. This is called the stack
fudge area.

2.3 Example
To illustrate the operation of the front-end and specifically the
management of the stack, consider the function foreach whose
source code is given in Figure 1. This function contains both a
tail call to loop and a non-tail call to f. To make the GVM code
generated easier to read, declarations are used in the source code to
ensure that the primitive functions pair?, car, and cdr get inlined,
and dynamic type checks are not performed by car and cdr, and
the loop is not unrolled.

1. (declare (standard-bindings)
2. (not safe)
3. (inlining-limit 0))
4.

5. (define (foreach f lst)
6. (let loop ((lst lst))
7. (if (pair? lst)
8. (begin
9. (f (car lst))

10. (loop (cdr lst)))
11. #f)))

Figure 1. Source code of the foreach function

The GVM code generated for this example is given in Figure 2
(the code’s syntax has been altered in minor ways from the normal
compiler output to make it easier to follow). In the GVM code
small integers prefixed with a “#” are basic block labels. The front-
end has translated the call to pair? into an ifjump instruction of
the primitive ##pair?. It has also translated the calls to car and
cdr into apply instructions of the primitives ##car and ##cdr
respectively, which do not check the type of their argument.

Upon entry to the foreach function, at basic block #1, the
parameters f and lst are contained in r1 and r2 respectively, and
r0 contains the return address. When the list lst is non-empty, all
three registers are saved to the stack (at lines 14-16) to create a
continuation frame for the non-tail call to f. r1 is set to the first
element of the list, r0 is set to the return point, a reference to
basic block #2, and f is jumped to (at line 22) with an argument
count of 1 and a frame size of 3 to account for the allocation of the
continuation frame and an empty activation frame. At the return
point, basic block #2, the continuation frame is read (at lines 5-7)
to prepare the tail call to loop (at line 8). The tail call is to a known

1. #1 fs=0 entry-point nargs=2
2. jump fs=0 #3
3.

4. #2 fs=3 return-point
5. r2 = (##cdr frame[3])
6. r1 = frame[2]
7. r0 = frame[1]
8. jump/poll fs=0 #3
9.

10. #3 fs=0
11. if (##pair? r2) jump fs=0 #4 else #6
12.

13. #4 fs=0
14. frame[1] = r0
15. frame[2] = r1
16. frame[3] = r2
17. r1 = (##car r2)
18. r0 = #2
19. jump/poll fs=3 #5
20.

21. #5 fs=3
22. jump fs=3 frame[2] nargs=1
23.

24. #6 fs=0
25. r1 = ’#f
26. jump fs=0 r0

Figure 2. GVM code generated for the foreach function

function so it is simply a jump to basic block #3 with a frame size
of 0 to account for the deallocation of the continuation frame.

Finally, note the placement of two interrupt checks at lines 8
and 19 which guarantee a bounded number of GVM instructions
executed between interrupt checks.

3. Translation to JavaScript
We will explain the translation process by referring to the final
JavaScript code produced when compiling the foreach function.
Figure 3 gives the relevant parts of the code.

To avoid name clashes with other code, all JavaScript global
variables and function names are prefixed by “Gambit ” in the code
actually generated by the compiler. For presentation purposes, we
have stripped this prefix and made some minor syntactic changes
(such as removing redundant braces). Some optimizations which
are discussed in Section 3.4 have also been disabled to improve
readability.

3.1 GVM State
Efficient access to the GVM state is critical to achieve good exe-
cution speed. For this reason the GVM state is stored in JavaScript
global variables (lines 1-5 in Figure 3). The stack and global vari-
ables are implemented with JavaScript arrays. Note that JavaScript
arrays grow automatically when storing beyond the last element,
which is convenient for implementing a stack. The registers, stack
pointer and argument count are also JavaScript global variables.

3.2 Data Representation
When possible, Scheme types are mapped to similar JavaScript
types. For example Booleans to JavaScript Booleans, vectors to
JavaScript arrays, and the empty list to JavaScript’s null.

Some types, such as pairs, strings and characters are JavaScript
objects with their own constructors (for example the constructor for
pairs is at lines 7-10). Strings can’t be mapped to JavaScript strings
which are immutable. However, symbols and keywords are mapped
to JavaScript strings.

3 2012/8/16



1. var reg0, reg1, reg2, reg3, reg4; // registers
2. var stack = [false]; // runtime stack
3. var glo = {}; // Scheme global variables
4. var sp = 0; // stack pointer
5. var nargs; // argument count
6.

7. function Pair(car, cdr) {
8. this.car = car;
9. this.cdr = cdr;

10. }
11.

12. function run(pc) {
13. while (pc !== false)
14. pc = pc();
15. }
16.

17. function bb1_foreach() { // entry-point
18. if (nargs !== 2)
19. return wrong_nargs(bb1_foreach);
20. return bb3_foreach;
21. }
22. bb1_foreach.id = "bb1_foreach"; // meta info
23.

24. function bb3_foreach() {
25. if (reg2 instanceof Pair) {
26. stack[sp+1] = reg0;
27. stack[sp+2] = reg1;
28. stack[sp+3] = reg2;
29. reg1 = reg2.car;
30. reg0 = bb2_foreach;
31. sp += 3;
32. return poll(bb5_foreach);
33. } else {
34. reg1 = false;
35. return reg0;
36. }
37. }
38.

39. function bb2_foreach() { // return-point
40. reg2 = stack[sp].cdr;
41. reg1 = stack[sp-1];
42. reg0 = stack[sp-2];
43. sp += -3;
44. return poll(bb3_foreach);
45. }
46. bb2_foreach.id = "bb2_foreach"; // meta info
47. bb2_foreach.fs = 3;
48. bb2_foreach.link = 1;
49.

50. function bb5_foreach() {
51. nargs = 1;
52. return stack[sp-1];
53. }

Figure 3. JavaScript code generated for the foreach function

In order to implement the full numeric tower, different con-
crete types are used to implement numbers. Fixnums are mapped
to JavaScript numbers, and bignums, flonums, etc are JavaScript
objects with specific constructors.

Functions, whether they are closures or not, are mapped to
JavaScript functions. However, because the function call protocol
uses the GVM registers and stack to pass arguments, the JavaScript
functions are parameterless. For example, the Scheme foreach
function is implemented by the JavaScript bb1 foreach function
at line 17.

3.3 Basic CFG Translation
If we discount the branch destination inlining optimization which
is explained in the next section, the back-end translates each ba-
sic block to a parameterless JavaScript function. Most GVM in-
structions are translated straightforwardly to JavaScript code. The
branch instruction at the end of the basic block is translated to a
return statement which returns the destination operand, that is a
reference to the JavaScript function containing the code of the des-
tination basic block, or a JavaScript closure (see Section 3.6).

For example, the GVM branch instruction at the end of basic
block #1 is translated at line 20 to a return of a reference to function
bb3 foreach which corresponds to basic block #3.

A trampoline, implemented by the function run at line 12, is
used to sequence the flow of control from the source to destination
basic blocks. The program is started by calling run with a reference
to the basic block of the program’s entry point.

The poll function called at lines 32 and 44 is responsible for
interrupt handling. After checking for interrupts and invoking the
appropriate handler, the poll function returns its argument.

3.4 Optimizations
With the basic translation each GVM branch incurs the run time
cost of one function return and call. The cost of the trampoline and
interrupt checks is reduced using the following optimizations:
Branch destination inlining. Basic blocks which are only refer-
enced in a single branch instruction or are very short (only contain
a branch instruction) are inlined at the location of the branch. This
happens frequently in ifjump instructions, effectively recovering in
the target language some of the structure of the source if. For ex-
ample, the destination basic blocks #4 and #6 have been inlined in
the if at line 25.
Branch destination call. Instead of returning the destination
operand to the trampoline, it is possible to return the result
of calling the destination operand. For example, the branch to
basic block #3 at line 20 is really implemented with return
bb3 foreach();. This makes it possible for the JavaScript VM
to optimize the control flow and perhaps inline the body of the des-
tination function. There will be an accumulation of stack frames on
the JavaScript VM if it doesn’t do tail call optimization. However,
the depth of the stack is bounded because of the presence of the
calls to poll, which cause an unwind of the VM’s stack all the
way back to the trampoline.
Intermittent polling. The frequency of calls to the poll function
is reduced by using a counter. Each branch instruction with a poll
flag decrements the counter. When it reaches 0, the poll function
is called, and the counter is reset (to 100). For example, line 32,
which is a polling branch to basic block #5, is really implemented
with the code:

if (--poll_count === 0)
return poll(bb5_foreach);

else
return bb5_foreach();

3.5 Meta Information
The code generated also stores some meta information on the first-
class basic blocks (functions bb1 foreach and bb2 foreach).
The property id set at lines 22 and 46 is required for serialization
of Scheme functions and continuations. For the return point basic
block #2 the properties fs and link are set at lines 47 and 48. This
is required for the implementation of continuations and is further
discussed in Section 4.

3.6 Closures
The mapping from Scheme closures to JavaScript closures is de-
signed to support closure serialization. The GVM’s flat closures

4 2012/8/16



are composed of a number of slots, including a slot referring to the
closure entry point. The slots of a Scheme closure are implemented
as properties of the JavaScript closure. The only closed variable of
the JavaScript closure is a reference to itself.

Consider the ccons function (curried cons) whose definition
is given in Figure 4 and whose generated JavaScript code is in
Figure 5.

1. (define (ccons x)
2. (lambda (y) (cons x y)))

Figure 4. Source code of the ccons function

1. function closure_alloc(entry_bb) {
2.

3. function self() {
4. reg4 = self;
5. return self.v0;
6. }
7.

8. self.v0 = entry_bb;
9.

10. return self;
11. }
12.

13. function bb1_ccons() { // entry-point
14. if (nargs !== 1)
15. return wrong_nargs(bb1_ccons);
16. var closure1 = closure_alloc(bb2_ccons);
17. stack[sp+1] = closure1;
18. closure1.v1 = reg1;
19. reg1 = stack[sp+1];
20. return reg0;
21. }
22. bb1_ccons.id = "bb1_ccons"; // meta info
23.

24. function bb2_ccons() { // closure-entry-point
25. if (nargs !== 1)
26. return wrong_nargs(bb2_ccons);
27. reg4 = reg4.v1;
28. reg1 = new Pair(reg4, reg1);
29. return reg0;
30. }
31. bb2_ccons.id = "bb2_ccons"; // meta info

Figure 5. JavaScript code generated for the ccons function

The construction of a Scheme closure is a two step process.
First, it is allocated using the closure alloc function (line 1).
The actual JavaScript closure is the self function defined at line 3.
Then its slots are initialized using property assignments (line 18).

The property v0 of the JavaScript closure is set to the closure’s
entry point (line 8). When the closure is called, the property v0 of
the closure is accessed (line 5) to branch to the correct closure entry
point. r4 will have been set to a reference to the closure itself (line
4), so that access to closed variables is possible. For example the
access to x is translated to reading property v1 of the closure (line
27).

4. Implementing Continuations
4.1 Continuation Management
We use the incremental stack/heap approach for managing contin-
uations [7]. This approach allows the GVM code to use a standard
function call protocol.

In the incremental stack/heap approach, the continuation, which
is conceptually a list of continuation frames, is stored in the stack

and in the heap. The more recent continuation frames are stored
in the stack, and older continuation frames form a linked chain of
objects (as in the “before” part of Figure 7 which has 3 frames in
the stack, and one in the heap). The continuation frames in the stack
are not explicitly linked, but those in the heap are.

Continuation frames are initially allocated in the stack, and in
some cases, such as when the current continuation is reified by
call/cc, they are later copied to the heap. The process of copying
the stack frames to the heap is called continuation heapification.
For this it is necessary to find where each stack frame starts and
ends by parsing all the stack. This is achieved by attaching meta
information to each return point: the continuation frame size (fs),
and the index of the slot in that frame where the return address is
stored (link). For example, the continuation frame created for the
non-tail call to f in the foreach has fs=3 and link=1 (this meta
information is set at lines 47-48 in Figure 2).

Given a stack of continuation frames, and the current return
address (ra), it is a simple matter to iterate over the frames from
newest to oldest. The topmost frame has a size of ra.fs, and
stack[sp - ra.fs + ra.link] is the return address in that
frame, which can be used to parse the next stack frame. This pro-
cess is repeated until the base of the stack is reached.

Each continuation frame in the heap is represented as a JavaScript
array with one more element than the frame size. If we call ra the
return address attached to the frame frm, then frm[0] contains ra
and frm[ra.link] contains the next frame in the chain (the value
false indicates the end of the chain). In other words, the heap
frames are chained using the slot of the frame which normally con-
tains the return address. All other slots of the continuation frame
are stored in the corresponding index in the array.

In our implementation, we store in stack[0] the reference to
the most recent continuation frame in the heap (the first in the
chain). The oldest continuation frame in the stack, which starts at
stack[1], is a special frame because the return address it con-
tains is always the function underflow. When the function which
created that frame returns, the frame will be deallocated, making
the stack empty, and control will be transferred to the underflow
function. This function causes the heap frame in stack[0] to be
copied to the stack and control is transferred to that frame’s return
address. In order to prepare for the next time the stack is emptied,
a reference to the next heap frame is copied to stack[0], and the
slot of the stack frame which contains the return address is set to
the function underflow. The definition of the underflow function
is given in Figure 6.

1. function underflow() {
2.

3. var frm = stack[0];
4.

5. if (frm === false) // end of continuation?
6. return false; // terminate trampoline
7.

8. var ra = frm[0];
9. var fs = ra.fs;

10. var link = ra.link;
11. stack = frm.slice(0, fs + 1);
12. sp = fs;
13. stack[0] = frm[link];
14. stack[link] = underflow;
15.

16. return ra;
17. }

Figure 6. Definition of the underflow function

5 2012/8/16



1. function heapify(ra) {
2.

3. var chain = false;
4. var prev_frm = false;
5. var prev_link;
6.

7. while (sp !== 0) { // stack not empty
8. var fs = ra.fs;
9. var link = ra.link;

10. var frm = stack.slice(sp - fs, sp + 1);
11. if (prev_frm === false)
12. chain = frm;
13. else
14. prev_frm[prev_link] = frm;
15. prev_frm = frm;
16. frm[0] = ra;
17. sp = sp - fs;
18. ra = stack[sp + link];
19. prev_link = link;
20. }
21.

22. if (prev_frm === false)
23. chain = stack[0];
24. else
25. prev_frm[prev_link] = stack[0];
26.

27. stack = [chain];
28. sp = 0;
29.

30. return underflow;
31. }

{

{

{ RA_cD
9

10

11

12

RA_d0

1

2

3

4

RA_c0

1

2

3

4

RA_b0

1

2

3

4

RA_bC
5

6

7

8

underflowB
1

2

3

4

0

stack

0

stack

RA_a0

1

2

3

4

false{A

Before After

RA_a0

1

2

3

4

false

Figure 7. Continuation heapification algorithm and example. Before heapification, continuation frames B, C and D are on the stack. After
heapification with the call heapify(RA d), where RA d is the return address back to the function which created frame D, all frames are in
the heap and explicitly linked using the frame slot normally containing the return address.

1. function bb1_continuation_capture() {
2. if (nargs !== 1)
3. return wrong_nargs(bb1_continuation_capture);
4. var receiver = reg1;
5. reg0 = heapify(reg0);
6. reg1 = stack[0];
7. nargs = 1;
8. return receiver;
9. }

10.

11. function bb1_continuation_return() {
12. if (nargs !== 2)
13. return wrong_nargs(bb1_continuation_return);
14. sp = 0;
15. stack[0] = reg1;
16. reg0 = underflow;
17. reg1 = reg2;
18. return reg0;
19. }

Figure 8. Implementation of continuation-capture and
continuation-return.

4.2 Continuation Heapification and call/cc

Continuation heapification is implemented with the function heapify
given in Figure 7. The parameter ra is the return address back to
the function which created the topmost continuation frame.

With the heapify function, it is easy to implement the con-
tinuation API of [7]. The functions continuation-capture and

continuation-return are implemented by the JavaScript func-
tions given in Figure 8. The call/cc function is then implemented
with these functions using:
(define (call/cc receiver)
(continuation-capture
(lambda (k)
(receiver (lambda (r)

(continuation-return k r))))))

5. Evaluation
5.1 Goal and Methodology
In this section we aim to evaluate the performance of the three ap-
proaches discussed in this paper and which are implemented in the
Gambit-JS, Scheme2JS and Spock compilers. Our methodology
consists in executing with each system specially selected bench-
mark programs which represent use-cases of tail calls and continu-
ations.

Although it has the virtue of being empirical, the methodology
has pitfalls for the comparison of the approaches because the com-
pilers may adopt different implementation strategies for features
unrelated to tail calls and first-class continuations. Some optimiza-
tion may be implemented in one compiler and not the other, even
though it could have been, which gives one compiler an advantage
that is not related to the continuation implementation approach. We
are interested here in comparing the approaches, not the compilers.
For this reason we have carefully chosen the source programs, pro-
gramming style, declarations, and command-line options, to avoid
unrelated differences. The target JavaScript code generated was ex-

6 2012/8/16



amined manually to ensure performance differences were mainly
due to the continuation implementation approach. Specifically, we
have avoided:
Local definitions. The Scheme2JS compiler is able to translate the
parts of the source program almost directly into the isomorphic
JavaScript code when it can determine that first-class continuations
need not be supported for those parts. This is frequently the case
when the entire benchmark program is a set of definitions within
an enclosing function (because the program analysis is simpler).
The other compilers do not have this optimization.
Non-primitive library functions. Primitive library functions like
cons and car are implemented similarly by the different compilers
and are inlined. More complex library functions, such as append,
map and equal?, have a wider range of possible implementations
(level of type checking, precision of error messages, variation in
object representation, etc). For this reason, benchmarks which use
non-primitive library functions contain a generic Scheme definition
of the function which uses primitive library functions.
Type checking. Scheme2JS and Spock primitive functions do not
type check their arguments. Gambit-JS’s type checking was dis-
abled with the declaration (declare (not safe)).
Non-integer numbers. Scheme2JS and Spock use JavaScript num-
bers to represent Scheme numbers, which means that they have
a partial implementation of the numeric tower. The declaration
(declare (fixnum)) was used for Gambit-JS so that all arith-
metic operations would be performed on JavaScript numbers, like
the other systems.
Function inlining. The compilers do user function inlining differ-
ently and under different conditions. Because function inlining has
a big impact on performance, it has been disabled with Gambit’s
(declare (inlining-limit 0)) declaration and Scheme2JS’s
command line option --max-inline-size 0. Spock does not in-
line functions.

Scheme2JS and Spock do not perform argument count checking
because they use the JavaScript semantics for argument passing
where it is allowed to pass fewer or more arguments than there
are formal parameters. Gambit-JS does perform argument count
checking as it is necessary for rest parameter handling, and it
provides additional safety and precise error messages. It is not easy
to remove the argument count checking in general, and it can be
argued that it is consistent with the virtual machine approach, so
it was not disabled in the experiments. The overhead of argument
count checking is fairly low (we have measured experimentally
using fib that the overhead is less than 5%).

5.2 Benchmark Programs
There are two groups of benchmark programs. The first group,
containing the programs fib35, nqueens12, and oddeven, do not
manipulate first-class continuations. The purpose of these programs
is to evaluate the impact on function calls of supporting first-class
continuations. The program oddeven performs only tail calls.

The second group use call/cc in various ways. The programs
ctak and contfib30 have non-tail recursive functions: ctak
reifies each continuation of its recursion, and contfib30 reifies
only the continuations at the leaves of the recursion. The program
btsearch2000 performs a backtracking search, and threads10
is a thread scheduler which interleaves the execution of 10 threads.

The source code of the benchmark programs is given in Ap-
pendix A.

5.3 Setting
The V8 JavaScript VM version 3.4.3, in its command-line variant
d8, running on a OS X 10.8 computer with a 2.2 GHz Intel Core

i7 processor and 16 GB RAM is used in all the experiments. The
Scheme systems used are:

• Gambit-JS version v4.6.6 20120811162045 with the decla-
rations (declare (standard-bindings) (fixnum) (not
safe) (inlining-limit 0)),

• Scheme2JS version 20110717 with command-line options:
--max-inline-size 0 --call/cc --trampoline,

• Spock version 4.7.0 with no special command-line options.

5.4 Results
The execution times of the benchmark programs are given in Fig-
ure 9.

Program Gambit-JS Scheme2JS Spock
fib35 1.038 3.273 (3.2) 3.226 (3.1)
nqueens12 .907 1.450 (1.6) 3.109 (3.4)
oddeven .851 2.419 (2.8) 7.132 (8.4)
ctak .251 35.048 (139.6) .400 (1.6)
contfib30 1.503 198.718 (132.2) 2.088 (1.4)
btsearch2000 1.449 39.723 (27.4) 4.267 (2.9)
threads10 1.606 39.914 (24.8) 3.459 (2.2)

Figure 9. Execution times of the benchmark programs. The time is
given in seconds. The number in parentheses are the times relative
to Gambit-JS.

On the benchmarks, the VM approach (Gambit-JS) is consis-
tently faster than the Replay-C algorithm (Scheme2JS) and CPS
conversion (Spock). It is 1.4 to 8.4 times faster than CPS conver-
sion, and 1.6 to 139.6 times faster than the Replay-C algorithm.

The Replay-C algorithm has its best relative times when call/cc
is not used (1.6 to 3.2 times slower than the VM approach). When
call/cc is used, the performance depends greatly on the depth
of recursion (24.8 to 139.6 times slower than the VM approach).
This is because the Replay-C algorithm restores the complete con-
tinuation on the JavaScript VM stack every time a continuation is
invoked. Our approach restores continuations incrementally, one
frame at a time, so the cost does not depend on the depth of the
continuation.

CPS conversion makes it trivial to reify continuations because
all functions are passed an explicit continuation parameter. Unsur-
prisingly, the CPS conversion approach has its best relative times
when call/cc is used (1.4 to 2.9 times slower than the VM ap-
proach). When call/cc is not used the relative times range from
3.1 to 3.4 when non-tail calls are performed. This is an indication
that the creation of closures for the continuation frames of non-
tail calls is more expensive than using an explicit representation
on a stack. It is surprising that for oddeven, which only performs
tail calls (i.e. no continuation frames are created), the relative time
goes up to 8.4. This is probably due to the cost of unwinding the
JavaScript VM’s stack at regular intervals to avoid overflowing it.
Spock does this through a check at every function entry, similar
to Gambit-JS’s interrupt checks, but not intermittently. When a
counter is added to check intermittently, the time drops to 3.767
seconds, which is still 4.4 times slower than Gambit-JS. It is likely
that this high cost is accounted for by a bad interaction between the
structure of the generated code and the V8 optimizer (in particular
the Spock stack checks use the JavaScript arguments form, which
can disable some optimizations).

6. Other Target Languages
In order to implement the python and ruby backend, we use na-
tive types where applicable and define specific objects in order to
preserve scheme’s semantic properties in the targeted language.

7 2012/8/16



Scheme / GVM Python Comment
fixnum native
float native
complex native
bignum native
char custom type
string custom type mutable strings
symbol custom type using native string
keyword custom type using native string
vector native
pair custom type
’() None
#t True
#f False
eq? is
equal? ==
closure and slots native function and attributes See Figure 10
continuation custom type
stack dict
registers dict or global variable
global var dict

Table 1. Implementations details

1. def closure_alloc(entry_bb):
2.

3. def self():
4. global reg4
5. reg4 = self
6. return self.v0
7.

8. self.v0 = bb
9. return self

Figure 10. Python closure alloc function

7. Conclusion
We have proposed a VM-based approach for implementing tail
calls and first-class continuations in dynamic languages which do
not have those features. Our approach compiles Scheme source
programs into an intermediate language, the Gambit Virtual Ma-
chine (GVM), which is then translated to the target language using
a trampoline and an explicit representation of the GVM runtime
stack. This allows continuations to be implemented with most of
the algorithms used by native code compilers [5]. We use the in-
cremental stack/heap approach [5] which allows the GVM code to
use a standard function call protocol, with a zero overhead for code
which doesn’t manipulate first-class continuations, and which has
a cost for invoking a continuation which is proportional to the size
of the topmost continuation frame.

Our experiments on specially selected benchmark programs in
the context of JavaScript show that the approach compares favor-
ably to the Replay-C algorithm used in the Scheme2JS compiler
and to the CPS conversion used in the Spock compiler. The execu-
tion time is consistently faster for the VM-based approach, up to
two orders of magnitude for programs using call/cc intensely in
non-tail recursive functions.

Acknowledgments
This work was supported by the Natural Sciences and Engineering
Research Council of Canada and Mozilla Corporation.

References
[1] URL http://www.call-cc.org/.

[2] URL https://github.com/jashkenas/coffee-script/wiki/
List-of-languages-that-compile-to-JS/.

[3] URL http://wiki.call-cc.org/eggref/4/spock.
[4] H. G. Baker. Cons should not cons its arguments, part ii: Cheney

on the m.t.a. SIGPLAN Not., 30(9):17–20, Sept. 1995. ISSN 0362-
1340. doi: 10.1145/214448.214454. URL http://doi.acm.org/
10.1145/214448.214454.

[5] W. D. Clinger, A. H. Hartheimer, and E. M. Ost. Implemen-
tation strategies for first-class continuations. Higher Order Sym-
bol. Comput., 12(1):7–45, Apr. 1999. ISSN 1388-3690. doi: 10.
1023/A:1010016816429. URL http://dx.doi.org/10.1023/A:
1010016816429.

[6] M. Feeley. Polling efficiently on stock hardware. In Proceedings of
the conference on Functional programming languages and computer
architecture, FPCA ’93, pages 179–187, New York, NY, USA, 1993.
ACM. ISBN 0-89791-595-X. doi: 10.1145/165180.165205. URL
http://doi.acm.org/10.1145/165180.165205.

[7] M. Feeley. A better api for first-class continuations, 2001.
[8] M. Feeley and J. S. Miller. A parallel virtual machine for effi-

cient scheme compilation. In Proceedings of the 1990 ACM con-
ference on LISP and functional programming, LFP ’90, pages 119–
130, New York, NY, USA, 1990. ACM. ISBN 0-89791-368-X.
doi: 10.1145/91556.91606. URL http://doi.acm.org/10.1145/
91556.91606.

[9] G. Germain, M. Feeley, and S. Monnier. Concurrency oriented pro-
gramming in termite scheme. 2005.

[10] R. Hieb, R. K. Dybvig, and C. Bruggeman. Representing control
in the presence of first-class continuations. 25(6):66–77, June 1990.
ISSN 0362-1340. doi: 10.1145/93548.93554. URL http://doi.
acm.org/10.1145/93548.93554.

[11] F. Loitsch. Javascript to Scheme compilation. In Proceedings of the
Sixth Workshop on Scheme and Functional Programming, pages 101–
116, Sept. 24, 2005.

[12] F. Loitsch. Exceptional continuations in JavaScript. In 2007 Workshop
on Scheme and Functional Programming, Sept. 2007.

[13] F. Loitsch. Scheme to JavaScript Compilation. PhD thesis, Université
de Nice - Sophia Antipolis, Mar. 2009.

[14] M. Serrano and P. Weis. Bigloo: A portable and optimizing compiler
for strict functional languages. In Proceedings of the Second Interna-
tional Symposium on Static Analysis, SAS ’95, pages 366–381, Lon-
don, UK, UK, 1995. Springer-Verlag. ISBN 3-540-60360-3. URL
http://dl.acm.org/citation.cfm?id=647163.717691.

[15] D. Yoo. Building Web Based Programming Environments for Func-
tional Programming. PhD thesis, Worcester Polytechnic Institute,
feb 2012. URL http://www.wpi.edu/Pubs/ETD/Available/
etd-042612-104736/.

A. Source Code of Benchmark Programs

1. (define (fib n)
2. (if (< n 2)
3. 1
4. (+ (fib (- n 1))
5. (fib (- n 2)))))
6.

7. (run-benchmark
8. "fib35"
9. (lambda () (fib 35)))

Figure 11. Source code of fib35.

8 2012/8/16



1. (define (app lst1 lst2)
2. (if (pair? lst1)
3. (cons (car lst1) (app (cdr lst1) lst2))
4. lst2))
5.

6. (define (one-up-to n)
7. (let loop ((i n) (lst ’()))
8. (if (= i 0)
9. lst

10. (loop (- i 1) (cons i lst)))))
11.

12. (define (explore x y placed)
13. (if (pair? x)
14. (+ (if (ok? (car x) 1 placed)
15. (explore (app (cdr x) y)
16. ’()
17. (cons (car x) placed))
18. 0)
19. (explore (cdr x)
20. (cons (car x) y)
21. placed))
22. (if (pair? y) 0 1)))
23.

24. (define (ok? row dist placed)
25. (if (pair? placed)
26. (and (not (= (car placed) (+ row dist)))
27. (not (= (car placed) (- row dist)))
28. (ok? row (+ dist 1) (cdr placed)))
29. #t))
30.

31. (define (nqueens n)
32. (explore (one-up-to n)
33. ’()
34. ’()))
35.

36. (run-benchmark
37. "nqueens12"
38. (lambda () (nqueens 12)))

Figure 12. Source code of nqueens12.

1. (define (odd n)
2. (if (= n 0) #f (even (- n 1))))
3.

4. (define (even n)
5. (if (= n 0) #t (odd (- n 1))))
6.

7. (run-benchmark
8. "oddeven"
9. (lambda () (odd 100000000)))

Figure 13. Source code of oddeven.

1. (define (ctak x y z)
2. (call-with-current-continuation
3. (lambda (k) (ctak-aux k x y z))))
4.

5. (define (ctak-aux k x y z)
6. (if (not (< y x))
7. (k z)
8. (ctak-aux
9. k

10. (call-with-current-continuation
11. (lambda (k) (ctak-aux k (- x 1) y z)))
12. (call-with-current-continuation
13. (lambda (k) (ctak-aux k (- y 1) z x)))
14. (call-with-current-continuation
15. (lambda (k) (ctak-aux k (- z 1) x y))))))
16.

17. (run-benchmark
18. "ctak"
19. (lambda () (ctak 22 12 6)))

Figure 14. Source code of ctak.

1. (define (contfib n)
2. (if (< n 2)
3.

4. (call-with-current-continuation
5. (lambda (k)
6. (k 1)))
7.

8. (+ (contfib (- n 1))
9. (contfib (- n 2)))))

10.

11. (run-benchmark
12. "contfib30"
13. (lambda () (contfib 30)))

Figure 15. Source code of contfib30.

1. (define fail (lambda () #f))
2.

3. (define (in-range a b)
4. (call-with-current-continuation
5. (lambda (cont)
6. (enumerate a b cont))))
7.

8. (define (enumerate a b cont)
9. (if (> a b)

10. (fail)
11. (let ((save fail))
12. (set! fail
13. (lambda ()
14. (set! fail save)
15. (enumerate (+ a 1) b cont)))
16. (cont a))))
17.

18. (define (btsearch n)
19. (let* ((n*2 (* n 2))
20. (x (in-range 0 n))
21. (y (in-range 0 n)))
22. (if (< (+ x y) n*2)
23. (fail) ;; backtrack
24. (cons x y))))
25.

26. (run-benchmark
27. "btsearch2000"
28. (lambda () (btsearch 2000)))

Figure 16. Source code of btsearch2000.

9 2012/8/16



1. ;; Queues.
2.

3. (define (next q) (vector-ref q 0))
4. (define (prev q) (vector-ref q 1))
5. (define (next-set! q x) (vector-set! q 0 x))
6. (define (prev-set! q x) (vector-set! q 1 x))
7.

8. (define (empty? q) (eq? q (next q)))
9.

10. (define (queue) (init (vector #f #f)))
11.

12. (define (init q)
13. (next-set! q q)
14. (prev-set! q q)
15. q)
16.

17. (define (deq x)
18. (let ((n (next x)) (p (prev x)))
19. (next-set! p n)
20. (prev-set! n p)
21. (init x)))
22.

23. (define (enq q x)
24. (let ((p (prev q)))
25. (next-set! p x)
26. (next-set! x q)
27. (prev-set! q x)
28. (prev-set! x p)
29. x))
30.

31. ;; Process scheduler.
32.

33. (define (boot)
34. ((call-with-current-continuation
35. (lambda (k)
36. (set! graft k)
37. (schedule)))))
38.

39. (define graft #f)
40. (define current #f)
41. (define readyq (queue))
42.

43. (define (process cont)
44. (init (vector #f #f cont)))

44. (define (cont p) (vector-ref p 2))
45. (define (cont-set! p x) (vector-set! p 2 x))
46.

47. (define (spawn thunk)
48. (enq readyq
49. (process (lambda (r)
50. (graft (lambda ()
51. (end (thunk))))))))
52.

53. (define (schedule)
54. (if (empty? readyq)
55. (graft (lambda () #f))
56. (let ((p (deq (next readyq))))
57. (set! current p)
58. ((cont p) #f))))
59.

60. (define (end result) (schedule))
61.

62. (define (yield)
63. (call-with-current-continuation
64. (lambda (k)
65. (cont-set! current k)
66. (enq readyq current)
67. (schedule))))
68.

69. (define (wait x)
70. (if (> x 0)
71. (begin
72. (yield)
73. (wait (- x 1)))))
74.

75. (define (threads n)
76.

77. (let loop ((n n))
78. (if (> n 0)
79. (begin
80. (spawn (lambda () (wait 100000)))
81. (loop (- n 1)))))
82.

83. (boot))
84.

85. (run-benchmark
86. "threads10"
87. (lambda () (threads 10)))
88.

Figure 17. Source code of threads10.

10 2012/8/16


