
Higgs, an Experimental JIT
Compiler written in D

DConf 2013

Maxime Chevalier-Boisvert
Université de Montréal

Introduction

● PhD research: compilers, dynamic language
optimization, type analysis

● Higgs: experimental optimizing JIT for JS
● The core of Higgs is written in D
● This talk will be about

● Dynamic language optimization
● Higgs, JIT compilation
● My experience implementing a JIT in D
● Implementation of a JIT for D's CTFE

 3

Dynamic Languages

● Typically have
● No type annotations
● Late binding
● Dynamic typing
● Dynamic loading of code (eval, load)
● Dynamic growth of objects

● Are not
● “Untyped” languages
● “Interpreted” languages

 4

Why so Slow?

● Naive implementations have significant overhead
● Values are usually “boxed”

● Values as pairs: datum + type
● CPython's numbers are objects!

● Every operator (+, -, *, etc.) has dynamic dispatch
● Global accesses and method calls require expensive

hash table lookups
● Easiest to implement in an interpreter

 5

Optimization

● Optimizing dynamic languages is largely about
removing unnecessary overhead

● Tools:
● Guessing likely types with heuristics
● Measuring likely types with profiling
● Proving types using type inference

● Goals:
● Unboxing values
● Removing dispatch overhead
● Inlining function calls

 6

Harder than it seems

● JS, Python, Ruby not designed with
optimization in mind

● Dynamic code loading, eval
● New code could be loaded at any point
● New code can break your assumptions

● Numerical towers, overflow checks
● Hard to prove overflows won't happen

 7

The Future

● Efficiently compiling dynamic languages
requires type information

● Translating programs into more static code
● Type analysis, type inference
● Prove that specific variables have a given type

● e.g.: x is always an integer
● e.g.: the function foo will never be redefined

 8

JIT Compilers

● Need access to low-level operations
● Manual memory management
● Raw memory access
● System libraries

● Are very complex pieces of software
● Pipeline of code transformations
● Several interacting components

● Wish for
● Expressive language
● Garbage collection

 9

I like C++, but...

● C++ is very verbose
● Header files are frustrating

● Redundant declarations
● Poor organization of code
● Annoying constraints

● C macros are messy and weak
● C++ templates still feel limited
● No standard GC implementation

● Boehm's GC: it will probably work™

 10

Other Options

● Google's Go
● No templates/generics
● No pointer arithmetic without casting first
● Very minimalist and very opinionated

● Mozilla's Rust
● Very young, still changing, in flux
● Not a realistic option when I started

 11

D to the rescue!

● Garbage collection by default
● But manual memory management is still possible

● Has been around for over a decade
● More mature than newer systems languages

● Attractive collection of features
● mixins, CTFE, templates, closures
● Freedom to choose

● Community is active, responsive

 12

Higgs

● Two main components:
● Interpreter
● JIT compiler

● Complexity:
● D: ~23 KLOC
● JS: ~11 KLOC
● Python: ~2 KLOC

● JS support:
● ~ES5, no property attributes, no with

 13

The Interpreter

● Interpreter is used:
● For profiling
● As a "fallback" for unimplemented JIT features
● To get started quickly. JIT compilation has a cost

● Designed to be:
● Simple, easy to maintain
● Quick to extend and experiment with
● "JIT-friendly"

● Interpreter is quite slow, 1000 cycles/instr

 14

JIT-Friendly

● Register based, not stack-based
● Easier to analyze/optimize

● IR is based on a control-flow graph, not an AST
● More amenable to JIT compilation
● Simpler, easier to reason about (IP, targets)

● Interpreter stack is an array of values
● Directly reused by the JIT

 15

fib(n)

If (n < 2) goto BASE else REC

ENTRY:

if (n < 2) goto BASE else REC

ENTRY:

If (n < 2) goto BASE else REC

ENTRY:

return n

BASE:

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t2 = n - 2

CONT1:

t3 = call fib(t2), return to CONT2

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t4 = t1 + t3

CONT2:

return t4

 16

The JIT Compiler

● Targets x86-64 only, for simplicity. Easier than
supporting just x86 32 bits.

● Kicks in relatively quickly, after functions have
been found hot enough (worth compiling)
● Execution counters on basic blocks

● Speedups of 5 to 20x
● Expected to soon reach 100x+ speedups

● Currently fairly basic
● No inlining, bulk of the code is function calls

 17

Current Research

● Context-driven basic block versioning (cloning)
● Context is:

● Low-level type information
● Register allocation state
● Accumulated facts

● Currently integrating this in the backend (JIT)
● Similarities with trace compilation

 18

LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) {
 x = f1(x,y,z);
 y = f2(x,y,z);
 z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
I: R9

LOOP_EXIT

 19

LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) {
 x = f1(x,y,z);
 y = f2(x,y,z);
 z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
I: R9

x: RBX
y: R11
z: stack slot 12
i: R9

LOOP_EXIT

 20

LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) {
 x = f1(x,y,z);
 y = f2(x,y,z);
 z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
I: R9

x: RBX
y: R11
z: stack slot 12
i: R9

mov RAX, RBX
mov RCX, R11
mov RSI, [RSP + 12 * 8]
mov [RSP + 10 * 8], RSI

LOOP_EXIT

 21

LOOP_BODY

LOOP_TEST

LOOP_INCR

x: RAX
y: RCX
z: stack slot 10
I: R9

x: RBX
y: R11
z: stack slot 12
i: R9

LOOP_EXIT

LOOP_BODY

LOOP_TEST

LOOP_INCR

LOOP_BODY

LOOP_TEST

LOOP_INCR

LOOP_BODY_V2

LOOP_TEST_V2

LOOP_INCR_V2

 22

A “Multi-world” View

● Traditional control-flow analysis
● Compute a fixed-point (LFP or GFP)
● At each basic block, solution must agree
● Find pessimistic answer that agrees with all inputs

● Block versioning
● Multiple solutions possible for a block
● All possible answers can be simultaneously true
● Don't necessarily have to sacrifice
● Fixed point on the creation of new blocks

 23

Advantages

● Automatically do loop peeling (when useful)
● Automatically do tail duplication
● May do some amount of loop unrolling
● Similar to trace compilation

● Accumulate knowledge (e.g.: from type tests)
● Specialize code based on types
● Specialize based on constants

● Register allocation
● Fewer move operations
● Make simpler allocators more efficient

 24

Research Questions

● How much code blowup can we expect?
● Will we have to limit block versioning?
● What can we do to reduce code blowup?

● What performance gains can we expect?
● What kind of info should we version with?

● Constant propagation
● Granularity of type info used
● How much is too much?

● What is the effect on compilation time?

 25

Design Choices

 26

Split Tagging

● Higgs uses a split tagging scheme
● No tag bits, no NaN tagging
● One value word (64-bit) + one type tag byte

● Downside: size, two stack pointers, two arrays
● Upsides:

● Values accessible directly, no unboxing
● Modern CPUs have multiple execution units
● In many cases, can completely ignore type info
● JIT performance favored over interpreter

performance

 27

 28

Low-level Instructions

● Higgs interprets a low-level IR
● Simplifies the interpreter

● Deals with simple, low-level ops
– e.g.: imul, fmul, load, store, call, ret

● Knows little about JS semantics

● Simplifies the JIT
● Less duplicated functionality in interpreter and JIT
● Avoids implicit dynamic dispatch in IR ops

– e.g.: the + operator in JS has lots of implicit branches!

 29

Self-hosting

● Runtime and standard library are self-hosted
● JS primitives (e.g.: JS add operator) are implemented

in an extended dialect of JS
● Exposes low-level operations

● Primitives are compiled/inlined/optimized like any
other JS code
● Avoids opaque calls into C or D code

● Easy to extend/change runtime
● Higher compilation times
● Inlining is critical

 30

// JS less-than operator (x < y)
function $rt_lt(x, y)
{
 // If x is integer
 if ($ir_is_int32(x))
 {
 if ($ir_is_int32(y))
 return $ir_lt_i32(x, y);

 if ($ir_is_float(y))
 return $ir_lt_f64($ir_i32_to_f64(x), y);
 }

 // If x is float
 if ($ir_is_float(x))
 {
 if ($ir_is_int32(y))
 return $ir_lt_f64(x, $ir_i32_to_f64(y));

 if ($ir_is_float(y))
 return $ir_lt_f64(x, y);
 }

 …
}

 31

The Higgs Heap

● Higgs manages its own heap for JS objects
● GC is copying, semi-space, stop-the-world

● Extremely simple
● Allocation by incrementing one pointer
● Collection time proportional to live data

● References to D objects need to be maintained
● i.e.: Function IR/AST

● Interpreter manipulates references to JS heap
● Higgs GC might invalidate these

 32

Interpreter

object closure

IRInstr

IRFunction

IRInstr IRInstr

D heap

Higgs heap

Live functions

 33

Declarative Object Layouts

● Want to control memory layout of our own
objects precisely

● Want access to objects from both D and JS
● Object layouts described in declarative form
● D and JS code for getters/setters, allocation,

initialization and GC traversal is auto-generated
at compile-time

 34

Interpreter Fallback

● JIT uses interpreter stack for spills
● JIT avoids compiling unexecuted blocks.
● Fast paths for common/expected cases

● Some slow paths use interpreter

● Some IR instructions handled by interpreter
● Allows incremental JIT construction/refactoring

 35

What Worked Well

 36

Learning D

● If you know C++, you can write D code
● Similar enough, easy adaptation
● Slightly less verbose
● It's actually easier

● Most of the adaptation is learning new idioms
● D has better/simpler ways of doing certain things

● Felt fairly intuitive
● (to a C++ programmer)

 37

Nifty Little Features

● D has many nifty little features that make the
language pleasant to use

● Not revolutionary, but common sense
● Many small features were a pleasant surprise

 38

foreach
foreach (value; iterable)

doSomething(value);

foreach (key, value; iterable)
doSomething(key, value);

foreach (regNo, localIdx; gpRegMap)
{
 if (localIdx is NULL_LOCAL)
 continue;

 spillReg(as, regNo);
}

 39

in and !in
key in map

(key in map) == false

key !in map

// Collect the dead functions
foreach (ptr, fun; interp.funRefs)
 if (ptr !in interp.liveFuns)
 collectFun(interp, fun);

 40

auto

auto interp = new Interp();

auto getExportAddr(string name)
{
 assert (
 name in this.exports,
 "invalid exported label"
);

 return getAddress(this.exports[name]);
}

 41

String Concatenation

return this.name ~ "(" ~ idString() ~ ")";

output ~= "(" ~ lStr ~ ")";

output ~= to!string(arg.int32Val);

 42

delegates

// mov
test(
 delegate void (Assembler a) { a.instr(MOV, EAX, 7); },
 "B807000000"
);
test(
 delegate void (Assembler a) { a.instr(MOV, EAX, EBX); },
 "89D8"
);

 43

Casting + declaration + test

// Function (closure) as an expression
if (auto funExpr = cast(FunExpr)expr)
{
 // Resolve variable declarations and
 // references in the nested function
 resolveVars(funExpr, s);
}

 44

Type Ranges
size_t immSize() const
{
 // Compute the smallest size this immediate fits in
 if (imm >= int8_t.min && imm <= int8_t.max)
 return 8;
 if (imm >= int16_t.min && imm <= int16_t.max)
 return 16;
 if (imm >= int32_t.min && imm <= int32_t.max)
 return 32;

 return 64;
}

 45

The Garbage Collector

● Had to make the Higgs and D GCs work
together
● Manual memory allocation
● Regions of memory not collected by D
● Maintain references to D heap alive

● Worked better than expected
● D GC behaves predictably
● Haven't had many bugs

 46

Templated Instructions

extern (C) void ArithOp(Type typeTag, uint arity, string op)
(Interp interp, IRInstr instr)

alias ArithOp!(Type.INT32, 2, "auto r = x + y;") op_add_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x - y;") op_sub_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x * y;") op_mul_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x / y;") op_div_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x % y;") op_mod_i32;

alias ArithOp!(Type.INT32, 2, "auto r = x & y;") op_and_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x | y;") op_or_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x ^ y;") op_xor_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x << y;") op_lsft_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x >> y;") op_rsft_i32;

 47

CTFE in Templates

/// Increment a global JIT stat counter variable
void incStatCnt(string varName)(Assembler as)
{
 if (!opts.jit_stats)
 return;

 mixin("auto vSize = " ~ varName ~ ".sizeof;");
 mixin("auto vAddr = &" ~ varName ~ ";");

 as.ptr(RAX, vAddr);

 as.instr(INC, new X86Mem(vSize * 8, RAX));
}

 48

The build system

● Faster build times than other static languages
● Much simpler than C/C++ makefiles:

● Pass source files to the compiler
● Things get compiled
● You are done

● Reduces need for complex build tools

 49

The Community

● Centralized dlang.org website
● Public web forums
● Responsive, enthusiastic community
● Most languages don't have this

 50

Problems Encountered

 51

Compile-Time Function Evaluation

● One of the reasons I chose D is CTFE
● Allows generating code at compile-time
● Powerful macro system

● Much more elegant than C's
● Allows creating domain-specific languages

● Hyped, novel feature of the D language
● Argualbly D's most powerful feature

 52

CTFE's quirks

● One of the main uses of CTFE is to generate
strings for use in mixin blocks
● At the time, no support for format (now fixed)

● Wish to use writef statements for debugging
● But these are not supported
● Told to use impractical pragma to print output

/usr/include/dmd/phobos/std/stdio.d(1614): Error:
fprintf cannot be interpreted at compile time, because
it has no available source code

 53

CTFE broke down

● Generating a few thousand lines of source code
became very slow

● Computer locked up during compilation
● Memory leak ended up using all available memory

● Told this issue would be fixed in several months
● Could not wait several months

● Ended up rewriting declarative source
generation code in Python

 54

“There are coding strategies to partially reduce the
memory used during CTFE, but in general it uses lot of
memory, sometimes too much. This problem is well
known [...] but it will take time to fix it well, possibly
some months or more.”

 55

 56

import std.string;
import std.array;
import std.conv;

string fun()
{
 auto app = appender!string();

 for (size_t i = 0; i < 10000; ++i)
 app.put("const int x ~" ~ to!string(i) ~ " = 0;");

 return app.data;
}

mixin(fun());

 57

 58

Template Issues

● Needed template with list of integer arguments
● Known compiler bug
● Had to accept code duplication

mixin template MyTemplate(int[] arr) {}

Error: arithmetic/string type expected for value-
parameter, not int[]

 59

The assert that segfaults

● Tripped assert causes segfault when in a
function indirectly called by generated code

● Segfaults, prints nothing
● Tries to unwind the stack and fails
● assert statements are meant to provide useful

info if something goes wrong
● Should probably print an error before

attempting to unwind the stack

 60

Interp.loop()

jit_entry_point()

main()

op_eval()

error() assert (foo, “something went wrong”);

catch (...) {…} // Catch uncaught exceptions

 61

Interp.loop()

jit_entry_point()

main()

op_eval()

error() assert (foo, “something went wrong”);

catch (...) {…} // Catch uncaught exceptions

One of these frames is not like the others,
one of these frames just doesn't belong!

 62

D's Unit Tests Support

● Doesn't support naming unit tests
● Doesn't log passing or failing unit tests
● Failing tests not reported at the end
● The main function is still called normally

● Higgs starts a REPL by default

● Token support for unit tests
● Tempted to write our own framework

 63

alias void function(CodeGenCtx ctx, CodeGenState st,
IRInstr instr) CodeGenFn;

CodeGenFn[Opcode*] codeGenFns;

/// Map opcodes to JIT code generation functions
static this()
{
 codeGenFns[&SET_TRUE] = &gen_set_true;
 codeGenFns[&SET_FALSE] = &gen_set_false;
 codeGenFns[&SET_UNDEF] = &gen_set_undef;
 codeGenFns[&SET_MISSING] = &gen_set_missing;
 codeGenFns[&SET_NULL] = &gen_set_null;
 codeGenFns[&SET_INT32] = &gen_set_int32;
 codeGenFns[&SET_STR] = &gen_set_str;

 codeGenFns[&MOVE] = &gen_move;

 codeGenFns[&IS_CONST] = &gen_is_const;
 codeGenFns[&IS_REFPTR] = &gen_is_refptr;
 codeGenFns[&IS_INT32] = &gen_is_int32;
 codeGenFns[&IS_FLOAT] = &gen_is_float;

...
}

 64

Cyclic Module Dependencies

● Aborting: Cycle detected between modules with
ctors/dtors

● Why does this happen?
● Prevent module A accessing unininitialized module B?

● Possibly too strict
● False dependencies most of the time

● Forces division of code into additional modules
based on compiler limitations
● Somewhat reminiscent of C++ header issues

 65

A JIT for D's CTFE?

 66

The Cost of JIT

● Mainstream VMs typically have a JIT with
multiple optimization levels
● Or an interpreter and a JIT (e.g.: Firefox, Higgs)

● JIT compilation takes time, must pay for itself
● Not worth it for functions that only run a few times
● Only worthwhile for heavier computational loads

● Majority of code never gets optimized
● Doesn't run for very long, if at all

 67

Does CTFE need a JIT?

● What kinds of things are people doing with it?
● Typical scenario: source generation for mixin
● At most a few thousand string concatenations
● Probably don't need fast CTFE for this

● Be open minded: faster CTFE opens doors
● Generating procedural content at compile time
● “If you build it, they will come”

 68

A Simple Architecture

● Don't bother optimizing the interpreter
● Mozilla is planning to switch to an AST interpreter

● Start with a simple JIT
● e.g.: stack-based, no register allocation
● Will compile very fast
● Will be much faster than your interpreter

● Reuse some of the D compilation infrastructure?
● Compile the really hot code with DMD
● Reuse compiled code between CTFE runs

 69

AST
Interpreter

Simple JIT
(baseline)

DMD

1st call

500th call

5000th call

ASM

Optimized
ASM

SourceSource

SourceSource

≤ 10%

≤ 1%

 70

Other Considerations

● Precompile most library code used in CTFE
● Interpreter can call into compiled code
● i.e.: most string/array operations
● Some templates can be precompiled

● Re-optimizing mid-call complicates things
● Long-running functions
● Probably not a concern

 71

Suggestions

 72

Bug Fixing Effort

● Fixing CTFE bugs is critical
● Bugs like these can scare people away

● Need to be fixed very rapidly

● Make bugtracker more visible
● Allow users to vote on bug fixing priority

● Some bugs will affect many people

 73

Static Initialization of Maps

● Associative arrays are useful for declarative
programming

● Can't currently statically initialize them in D
● Requires using static constructors

● Is possible in JS, dynamic languages
● Would be helpful if this feature was in D

● Still useful if limited to constant maps

 74

Integer Types

● D integer types have guaranteed sizes, but
they're not obvious from the name

● Why not have int8, uint8, int32, uint32, etc. in
default namespace, encourage their use?

● Make programmers more aware of the
limitations/characteristics of the type they're
using.

 75

Documentation Effort

● Make the language more accessible
● Expose people to more idiomatic code
● dlang.org, Documentation->Articles

● Few things in there, most not that useful for beginners
● Articles/Tutorials should be the first thing under

Documentation

● Expand/promote tutorials
● Show people the cool things you can do with D

 76

Conclusion

● Overall positive experience using D
● Some hiccups, but no showstoppers
● Felt more productive than writing C++
● People accused C++ of being too complex

● D has all the features, feels like cohesive whole
● Re-engineered with hindsight

 77

github.com/maximecb/Higgs

maximechevalierb@gmail.com

pointersgonewild.wordpress.com

Love2Code on twitter

 78

Special Thanks To

● Thesis advisors: Bruno Dufour, Marc Feeley
● Contributors: Tom Brasington, John Colvin
● Supporters: Erinn
● The flying spaghetti monster

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

