
Reconfigurable, Retargetable Bignums:
A C a s e S t u d y i n E f f i c i e n t , P o r t a b l e L i s p S y s t e m B u i l d i n g

J o n L W h i t e

L u c i d , Inc .
707 L a u r e l S t r e e t

M e n l o P a r k , C A 94025

N O T A T I O N

In Lucid Common Lisp, there are internal nsmce used in
the development of the system itself for all the. standard simple
arithmetic functions that imply flxnum-only arithmetic; e.g.,
(loglor& x y) is basically the same as

(the ti.x~ua (1ogtor (the f lxnua x)
(the fSxnma y)))

In the paper, use of names like '-F&' and '*&' will imply these
semantics, and furthermore, the Lucid Common Lisp compiler
ought to emit the most efficient, flxnum-only arithmetic in-
structions for such operators. In the explanations below, note
that 'I ' used as a operator does not mean 'logics] or,' as in
the C language, but rather 'juxtaposition,' as in msthmetical
logic. The sense of the 'juxtaposition' is base arithmetic; for
example, when the base is 10, then 315 means just $5. In gen-
eral, when dealing with "bigits'wbignum digits--Zlll means
(+ (ash x b l t s - p e r - b l g S t) y).

1. I N T R O D U C T I O N

Bignums--indefinltely large integers--have been a
part of Lisp for a long time. They seldom figure into
the more prominent AI applications--in fact, Interlisp
(and its predecemsors) existed from the early 1960's until
recent time ~ without them--but in the area of symbolic
algebra they are critical. Indeed, no modern Lisp could

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or spccfic
permission.

be considered complete unless it offered a smooth, user-
invisible transition between efficient machine numbers--
' f ixnums'--sad those of larger size. Since they are so
rarely used in common operations, their efficiency is of
less concern than, say, arithmetic in general; yet one one
would not want to have to fear them as a system compo-
nent of totally unknown performance capability.

Even in languages that have long been standardized,
such as Fortran If, there are subtle variances between one

hardware implementation and another, and programmers
have been known to latch onto these variations and even
build dependencies on them in their programs [Profes-
sor W. Kahan of UCBerkeley has a number of interest-
ing tales to tell on this score!]. Yet the appearance of
machine-dependencies in the user-level language would
have little impact on the system implementor ur~¢ss the
implementation is being done in that very language itself.
The rise of Lisp-in-Lisp systems brings this issue to the
fore. The Lisp machine developments on special-purpose
hardware were among the first to champion this approach
(see: [Deutsch 19731; [Greenblatt 1977]), but significant
trends were already occuring along these lines for "stock"
hardware (see: [Moore 1976]; [White 1979]; [Griss 19801,
[Grisa 1981], and [Gabriel 1983]). In fact, Lucid Common
Lisp is a just such Lisp-in-Lisp system, targeted towards
many different machine architectures.

In this paper, we shall investigate a technique for
mediating between the extremes of, on the one hand a
completely ad-hoc, machine language implementation for
maximum speed, and on the other hand a purely Lisp-
written implementation for transportability. The focus of
our investigation is not on the rational algorithms them-
selves, which are ¢uentially those termed "Clmsical"in
[Knuth 1981], but rather on the classification of their
coding into a purely machine-independent part, a purely
machine-dependent part, and a part that can, electably,
be placed in either category.

We shall present a set of new primitive arithmetic op-
erations that focus on the substantial activity of biguuma;
these new operations may be coded either in Lisp, or

© 1986 A C M 0-89791-200-4/86/0800-0174 75¢ lY4

as machine language templates in the code-generator of
the compiler. The bignum algorithms are coded in a
machine- and implementation-independent fashion using
these primitives, and are thus available without specific
reference to the machine architecture at hand. These
primitives have been implemented with variatious in the
target machines-- the retargeting p a r t - - a n d variations
in the degree of machine-dependence---the reconfigurable
part .

The primitives are ahighly-leveraged" in that a mod-
est amount of effort spent reconfiguring them as described
below will yield a large pay-off in overall efficiency. Since
the overwhelming amount of bignum code (indeed, the
overwhelming amount of Lucid Common Lisp itself!) is
wri t ten in Lisp, we depend upon an optimising compiler
for a certain degree of efficiency (see [Steele 1982] and
[Brooks 1986)] Performance increases are observed dur-
ing the successive refinements of a configuration.

Finally, we present numerous benchmark da ta to
gauge the performance of this design, both before and
after the reconfiguring, and to compare its overall speed
with that of some other commercially available Common
Lisp implementations, t

1.1 The Problems of 'Porting'

A Lucid Common Lisp implementation consists of

o A very large base of Lisp code (on the order of
106 lines) that is machine- and implementation-
independent;

o A machine-specific code generator, which is par t of
a dynamically-retargetable (and generally machine-
independent) Lisp compiler [Brooks 1986];

o A table-driven assembler--LAP, the "Lisp Assembly
P rog ram ' - -wh ich is easily tailorable to most machine
architectures;

o Several thousand lines of LAP-coded (i.e., machine
language) routines which support the virtual machine
environment and some of the operating system inter-
faces;

o A kernel image loader that produces an executable
format image for the target machine (the rest of
the Lisp system, compiled for the target machine, is
loaded into the kernel to build a full Common Lisp
image).

I A8 thiJ work h~ only recently been completed, some paxts
of the pedormtnce compatl,ons may be incomplete. Furthermore,
the discmmions of portings to a few of the more novel architectures
h~ to be limited by Lucid'8 contractual obligation not to divulge
what port8 ate being worked on until the h~dw~e mtnuf&cturer--
the O~M contractor for whom Lucid is doing the work-- decides
to amnotmce the product. It is expected that Hveral more more
interesting port* will be free for public discussion by the time of
the Lisp Conference in Augtmt 1986.

Since there are numerous porte of the system to many
differing machines, it is advantageous to keep the amount
of machine-specific code to a minimum.

The goal for bignurus has been to strike a balance be-
tween the tensions mentioned above- - tha t is, to place a
good deal of aknowledge" about bignums in the machine-
independent Lisp code, and thus amortize the cost of de-
sign, debugging, maintenance, etc. over the many porte,
or implementations, in which very little, if any, bignum
development would be done. Furthermore, the porters to
" l a t e r machines are generally not the same persons who
wrote the first version of the machine-specific sections; 8o
the larger these sections are, and the more intricate and
delicate their design, the harder the porter 's job becomes.

Because the special knowledge of how bignuma work
on a given target machine is tied up in the compiler 's
databases, and because the Lucid Common Lisp compiler
is dynamically retargetable towards numerous machines
all at the same time, we can call such an implementa-
tion ' retargetable bignums'. See the paper in these con-
ference proceedings about Lucid's retargeting compiler
[Brooks 1986}.

Initially, a porter may elect to do no special work
for bignums, prefering to concentrate his t ime on reach-
ing a moderately large, fully correct Common Lisp kernel
subset. Then as t ime permits, he may begin at the lower-
levels of the new arithmetic primitives (introduced to aid
in the decomposition of the bignum algorithms), and put
in as much work as desirable; he may then expect to see
the reward of an increase in performance proportional, in
some degree, to the amount of work he has put in. Sec-
tion §2.2, of this report describes the differing configura-
tions based on two notions defined there: the machine's
endian-ness, and the bigit sizes. The code-generator for

the MC68000 implementations supports all the configu-
rations described, although a porter 's chief concern will
be the switch to larger bigits than the initial implemen-
tat ion affords; this configuration change has been found
to have the most payoff in performance.

1.2 Performance Ezpectations

The range of performance between a special-purpose,
highly "tuned" machine language implementation, and
a "vanilla", Lisp-coded one may be seen by comparing
the port of PSL [Uta~ 1982] to the IBM/370 with IBM's
YKTLisp (a commercially available Lisp dialect devel-
oped s t the Thomas J. Watson Research Center in York-
town Heights, New York). YKTLisp is descended from
Lisp/370, which had L significant amount of its code writ-
ten in 'best possible' machine language. Bignums were so
coded, and were thus very dependent both on the 370 ar-
chitecure and on the part icular implementation details
of Lisp/370. PSL is at the other extreme, with very lit-
t l e being machine specific; its blgnums are Lisp-coded in

175

a "vanilla* style. Multiplication intensive benchmarks,
such as computing z I°°°, were generally about 300 times
slower in PSL/370 than in YKTLisp; the person doing
the port isolated a small subroutine in which the PSL ver-
sion was spending most of its time, and by hand-coding
that, the slowdown factor dropped from 300 to about 70
[McDonald 1985].

Of course, a benchmark like z 1°°° is not a very help-
ful one for most Lisp users, since it measures performance
at or near some asymptotic limit; the relative behaviour
of the algorithm may vary markedly in the 'smaller num-
ber' ranges, where most realistic encounters with bignums
will occur. Nevertheless, our goal has been to be not
two orders of magnitude slower than 'best possible', and
not an order of magnitude slower, but something within
the range of a half order of magnitude-- something more
akin to the relative discrepancy observed between highly
"tuned ~ machine language and the output of a good com-
piler. We think it would be acceptable for this portion of
a Common Lisp to come with a factor of 3 to 7 of 'best
possible', given its relatlve significance in the overall ap-
plication spectrum.

One very interesting observation is that the purely
Lisp-written biguums come from Lisp implementations
that were driven by symbolic algebra applications:
PSL was driven by REDUCE [Hearn 1973], and NIL
[White 1979] was driven partly by MACSYMA. Franz-
Lisp [Foder~ro 1982] was driven partly by VAXIMA,
a derivative of MACSYMA, and, although not Lisp-
written, its biguums were in C rather than in machine
language (and as the timings tables show, the speed of
the C-wrltten version is in between the 'best possible'
machine language and the purely Lisp-written versions).
While AI research and applications do not, in general,
seem to need much in the way of bignum support, it is
counter-intuitive that the biguum-oriented applications
would' favor portability over speed. It seems to suggest
that ever-increasing speed in the asyraptot¢ may be pur-
sued more for the interesting technical challenge it poses
than for the fulfillment of a user-driven needs. [However,
questions about application needs nearly always have to
be addressed on an individual basis.]

1.3 Factoring In Low-Levd Operatiorsa

At some level, the machine dependencies can be
encapsulated by the implementation within a language-
specific feature, or module. One critical area implicit
in the Lisp computation model is stack operations. Yet
there are no primitives in Common Lisp for dealing with
all the variations that occur in the notion of "stack'. On
some machines there are a wide variety of instructions
and operand modes that make stack-frame usage a fund,-
mental part of any compiled function, whereas on others,
there is no support. For these reasons, it seems wise that

that Common Lisp specification not include such prim[-
tires; yet the lowest-level aspects of compiled code must
deal with them. For example, when • function definition
specifies optional arguments ('&optional'), there must be
runtime code that deals with extending the stack frame

in much the same way that variable-binding contours ex-
tend it. These are among the kinds of operations, along
with the function calling protocol, that are time-critical
and that apparently do not decompose directly into ex-
isting Common Lisp primitives.

Arithmetic, however, encompases many Common
Lisp primitives. While advanced mathmetics may play
a part in the implementation of functions such as, say,
ATANII, a number of clever but simple tricks in the com-
pUer'e code generator are very important for the basic ra-
tional operations. For example, many implementors have
independently discovered a suitable choice of tag layout
in a 'tagged pointer' Lisp implementation so that generic
+ may be compiled in such a way as to impose very little
overhead when the arguments are fixnums. (Researchers
at IBM's Yorktown Research Center used such a trick in
the early 1970s in LISP/370--[White 1978]) In a typical
port of Lucid Common Lisp, three very fast non-memory
instructions--a logical 'or', a bit test, and a conditional
branch--suffice to certify that the arguments are fLxnums.
Admittedly this is slower than having just the one 'ma~
chine add' instruction (which could be emitted when ap-
propriate compiler declarations are in effect) but there
are many places where this difference just isn't important;
especially in the RlSC-type machines, the extra register-
to-register instructions begin to resemble microcode for
the special-purpose Lisp machines. Of course, if one or
more of the arguments to the function aren't fixnums,
then some slower route will be entered; the bignum algo-
rithms will be invoked by just such a route.

2. Format of Bignums in Lucid C o m m o n Lisp

Bignums are stored-memory objects with a header
word containing the length in bits. They are of a dif-
ferent data type than any array, but in other respects
they resemble simple bit vectors. There are low-level, but
machine-independent, primitives to access 16-bit chunks,
to access the length field, to allocate memory for one of
a given size, and to test the type (i.e., BIGNUI~P). There
are also access/update primitives for 8-bit chunks, but
either one of the 16-bit or 8-bit primitives could be de-
rived rather simply from the other given efficient fixnum
versions of LDB and DPB.

The interpretation of the hits of a biguum is as the
two's complement representation of a number, with the
higher-order accessor indices holding the more significant
bits (i.e., the accessor primitives are 'little-endian'; if it

176

were 'big-endian' , then the lowest-valueu accessor index,
rather than the highest, would designate the most signif-
icant chunk of bits). I t appears as though bignum im-
plementations prior to the advent of Common Lisp used
signed-magnitude representations, although there is very
little, if any, documentation of those efforts. We chose
two's complement format because there seems to be a
feeling among many other Common Lisp implementors
that LDB should execute in constant time; and if LDB is
applied to a negative number in signed-magnitude for-
mat , then to be consistent with fixnum representation
(which is two's complement on all the machines currently
supporting Lucid Common Lisp) the bignum would have
to he negated, or at least part ial ly negated in order to
fetch the proper bits. Due to carries, negating a bignum
might involve accessing every word up to and including
the byte of interest. We note also that Symbolics Com-
mon Lisp, VAX LISP and VAX/NIL have also gone for
two's complement representation.

The part icular algorithms used are simply the so-
called Classical Algorithms described in section 4.3.1 of
[Knuth 1981]. Although we have investigated some more

complex algorithms that do show a significant improve-
ment in the asymptotic behadours, we are also concerned
with the bchaviour on relatively small bignums; a rule of
thumb for programs that are typically writ ten in Lisp is:

• almost all numbers are fixnums;

• almost all integers that aren ' t simply fixnums are
smaller than a '?.-word' bignum;

• almost all bignun~ that are bigger than a '2-word'
bignum are still smaller than a '4-word' bignum;

• and so on.

This may be characterized as a kind of 'Zipf 's L a w ' - -
exponentially diminishing probabili ty of occurance as the
numbers get larger. The author, while at MIT, ex-
perimentally verified this rule by observation of vari-
ous technical and engineering applications in MACSYMA
(MACSYMA, a symbolic algebra 'expert system', is cur-
rently available through Symbolics, Inc., Cambridge,
Massachtmetts).

2.10pcratior~s on 'Words'

]vVe use the term 'word' to mean a chunk of storage
large enough to hold a basic Lisp pointer; we also use it
to mean the size of arithmetic that the machine's ALU
supports. Normally this is the same size--32-bits for ma-
chines like the MC68020--but there are a few ' rough'
spots in the MC68010 (the ALU does 32-bit additions,
but only 16-bit multiplications and subtractions). When
word-sized operations are available, it makes sense to ex-
tend one or more of the bigit sizes in order to operate
upon word-sized chunks. For example, a machine might
not efficiently support byte or half-word addressing; it
could then be more than twice as expensive to fetch each

half-word separately and operate upon the half words,
than to fetch and operate upon the whole word.

Bignums axe allocated in units of a t least one 32-bit
word (a consequence of the memory manager for Lucid
Common Lisp). Thus sign-extension will be to the 32-bit
word, and this is required if any of the machine's 'word-
sized' ari thmetic instructions are to be used.

We seek operations that can work on 'words' at a
time, especially those for which the underlying primitive
can be constructed with minimal effort. A good can-
didate is BIGHtlM-W0Pd)-ItEPLACE; many machines have
a very ehort , fast instruction sequence to do a block
transfer of words (or of by tes - - i t doesn' t mat ter here),
and these sequences would be the target of a primi-
tive tha t copied the bits from one or more words of
one bignum into another. Since it is desirable not to
allocate new storage for intermediate operations, there
are a number of places in our encoding of the 'Classi-
cal ' algorithms where we do BIGNUH-¥OItD-ItF.PLACE, or
BIGNUM-W0P.D-NEGATE-INT0-BI(~NUM (a variant that 're-
places' with the negation of the source) into resource-
managed, temporary bignums. The section on compara-
tive performance shows that even these copying steps are
visible in benchmarks such as FRPOLY.

While the compiler 's code generators may con-
tain primitives that handle 33-bit chunks (or 'machine
words') , such is not the case with Lucid Common Lisp's
fixnun~ which, in the current design, are limited to
30 bits. This is the main reason why some primitives
must be implemented direCtly by the code generators-- i t
is not so much that the compiler would produce terrible
code for the Lisp-written version, but rather that when
the chunk size for the algorithm is increased to a certain
size, a few of the intermediate calculation values may
exceed the flxnum capacity. We note that a 'machine
word' need never be represented by a Lisp quantity; only
the location of the 'word' in question must be specifi-
able. We refer to 'words' as a normal object pointer and
a word-sized index offset from that pointer. Thus we
haven' t taken the step of creating a separate systems-
implementation language, like SYSLISP [Benson 1981]
or LIL (an undocumented 'Lispy Implementation Lan-
guage' variously developed at MIT and Symbolics during
the early 1980's) 1, but rather have chosen to extend the
compiler in a very straightforward way.

Nevertheless, we do have to arrange the bignum al-
gorithms so that they can take advantage of the speedier
code-generator templates when available. A typical sort
of approach is (1) do some primitive operation a bigit at
a t ime until a word boundary is reached, then (2) 'whiz

I One might view these languages u • kind of BCPL embedded
in Lisp

177

along' using a different primitive that operates a word at
a time, as long as a full word's worth of bits remain, and
then (3) 'wind down' by going a bigit at a time, until the
final end point is reached. We refer to this strategy as
'Whiz-Along-By-Words'. The ca~ry-propogation part of
the addition algorithm is a prime candidate susceptible
to this kind of breakdown.

Of course, if a 'blgit' is at least as large as a 'word',
then there is not nearly so much advantage to 'Whizzing-
Along-By-Words', especially if the Lisp compiler can ap-
proach a good hand coder in efficiency. This isn't the
case in most ports of Lucid Common Lisp now, because
the fixnum sise is generally smaller than the word size.

3.3 The Problem o/ 'Bigit' Size

3.3.1 What is a 'Bigit'

A 'bigit' is a 'bignum digit', and is thus an integer
between 0 and R - 1 for some positive radix R; the size of
a bigit, in terms of number of bits, will vary from imple-
mentation to implementation as well as / tom algorithm
to algorithm. In other words, there is a different bigit size
for the addition algorithm than for the multiplication al-
gorithm. We use the term 'abigit' to mean s digit in the
range suitable for the additive algorithms (addition and
subtraction); we use the term 'mbigit' to denote a digit in
the range suitable for the multiplication algorithm; and
we use the term 'dbigit' to denote a digit in the range
suitable for the division algorithm.

The option of non-uniform radices is exercised to
achieve the highest efficiency within the other constraints
of design. Sometimes these constraints are due to the
hardware [the MC68010 hardware can only do a 16-bit
multiply with 32-bit result, whereas other machines can
do a 32-bit multiply with 64-bit result] and sometimes
they are due to the amount code involved in the al-
gorithm. For example, bignum-by-biguum division is a
rather complex algorithm, and writing it in such a way
that intermediate quantities are not held in Lisp variables
would involve putting more into machine language t h u
could perhaps be tolerated by the goal of 'easy portabil-
ity'.

3.2.2 Bifit Aceeuors

All Lucid Common Lisp implementations support
8- and 1e-bit aceeesors as primitives, which are re-
spectively named BIIP.EF-8BIT and BIIP.EF-16BIT. The
existence of machine instructions like MOVB make
it an easy task for the porter to build these ac-
cese/update primitives and to support the 'arithmetic'
accessors det/cribed below by macroexpanding them into
BIIREF-8BIT and BIIREF-16BIT. For abigits, mbigits, and
dbigits, the access functions are named respectively
ABIGIT-REF, MBIGIT-BEF, and DBIGIT-REF. Each one

merely fetches a contiguous sequence of bits, and returns
them as a digit in the radix of that type. For example,
if the dbigit radix is 256 (= 2s), then the i'th auto-origin
dbigit of x, (a b l g l t - r e f x i) , can be computed by

(nod (/ x (expt 256 I)) 256).
Since the radix is a power of two, this could siso be ex-
pressed as

(Idb (byte 8 (ash I 3)) x)

In addition to the bigit sizes introduced for the four
basic rational operations, these routines deal with "xbig-
its m, with accessor function named XBIGIT-REF. Xbigits
are merely guaranteed to be a fixnum, regardless of any
constraints or extensions in the implementation. When
writing Lisp code to copy one bignum to another, for
example, there is no particular reason to "pick up" and
"put down" abigits, or mbigits~and in fact it would be
impossible should they be extended to 32 bits. Further-
more, the implementation of functions like LOGX01t should
avoid dependencies on the particular coding developed for
biguum addition; having an abstract, fixnum-sif~d higit
ensures that there will be no conflict in the logical op.
erators when biguums are "reconflgured" for more speed
from the rational operators.

Thus, with only 16-bit abigits, &.bit mbigits, and
8-bit dbigits, and 16-bit xbigits, all the bignum algu-
rithms are functional, being written entirely in Lisp us-
ing fixnum arithmetic only. A port will have a working
biguum implementation merely for the cost of duplicat,-
ing some simple-bit-arra~" primitives. The port may later
be reconfigured to use larger bigit sizes, which will neces-
sitate some amount of "machine language" for the code
generator, in order to gain speed. Improvements in speed
might be sought by 'inching' a 16-bit blgit up to s non-
word-aligned 24- or 2&.bit abigit, but the introduction
of primitives that can take advantage of the full 32-bit
word operations provided by virtually idl these mar.hines
is certainly preferable.

3.3.8 Unezplored Alternatives

It is convenient to focus on bigit sizes of 8, 16, and
32 (or possibly even 64), because of the existence of mum-
or,/access iustructiotts that operate in these units. Some
maghines have additional hardware or firmware to sup-
port other sizes; e.g., the VAX instruction gXTZv should
make it very easy to code accessors for any bigit size
from I to 29, although it would very likely be slower
than MOVe, MOVW, or MOVL when the bigit siam are
respectively 8, 16, or 32.

A question for further research would be whether
it is profitable to use LDB to acquire a 14-bit bigit for
multiplication and/or division in the '~anilla I case (in-
stead of an &-bit bigit); the attraction would be possibly a
quadratic speed-up/n the asgmpgote due to the increased
bigit size, but this would have to be measured against

178

the slowdown of units conversions and bigit access, es-
pecially on machines like the MC68000 series. However,
this issue is not very pressing, because we expect all Lu-
cid implementations will sooner or later make the step to
~machine language ~ versions of the new primitives.

Another possibililty is to use only 14 out of every
16 bits in memory; the bigit access function is merely
B~IP.EF- leBIT, but it would guarantee that the bigit would
be less than 2 t4. This would break the similarity between
bignums and machine arithmetic, and would complicate
the LDB function somewhat, although maybe not as much
as signed-magnitude representation does; but the real ob-
jectious are the same as in the preceeding p a r a g r a p h ~ i t
is a side-track away from the road to real "machine lan-
guage" level arithmetic.

2.3 Bigits for Additive Algorithms

Abigits are non-negative integers less than
2 abigit'sise. This says that we need an (unsigned) adder
that is one bit wider than the abigit size. Most machines
manage to achieve an abigit size of exactly one word by
keeping a carry bi t around in the process status register,
thereby extending the adder width by one bit. For exam-
ple, if the abigit s i z e - t h e number of bits needed to hold
an abigi t - - iz N, then the intermedite step of the addi-
tion algorithm needs to construct a number that is the the
sum of two abigits, and possibly a carry from the previous
position; each abigit is strictly less than 2 N, so the max-
imum value this sum may have is (2 ~v - 1) + (2 Iv - 1) + 1,
or 2 * 2 ~ - 1, which is strictly lees than 2 N+I. Thus one
more bit of adder width is satisfactory.

A primitive addition facility could be this 3-input,
2-output function:

(defun p r i m i t l v e - a b l g l t - a d d (c a r r y - l n x y)
; ; Adds ' x ' t o ' y ' , p l u s t he ' c a r r y - i n '
; ; Re turns two v a l u e s : t he sum, aodu lo t h e
; ; b i g i t s i z e , and the c a r r y - o u t
(l e t ((s u a (+& c a r r y - i n x y)))

(v a l u e s (l db (by te a b i g i t - e i z e 01 sua)
(if (>=& sum (exp t 2 abigit-size))

I
o))))

Note that all intermediate results are strictly less than
2t+abilit'sise; thus the additive algorithms can be writ-
ten in Lisp providing only that fixnums are at least
abigit-size + 2 bits in width (remember: fixnums are
twos's complement format, which still requires an extra
bi t for the sign). This means that 16-bit abigits would be
workable for Lucid Common Lisp, or even up to 28-bit
abigits; but 29-bit abigits would not work because fixnum
overflow would produce a wrong value for the calculation
of sum above, and the ' > - - &' test would give the wrong
result.

If this definition is taken for the lowest-level addition
primitive (and if the target machine can ignore overflows
from its ALU), then it can be implemented in the code-
generator as jus t a couple of machine language instruc-
tions, providing only that

abigit-size < bits-per-word,

On the MC68010, and machines like it, the code pat tern
would simply be something like

' ((add , c a r r y .x)
(add ,x ,y)

; ; Sum produced in r e g l s t ~ r ' y ' ;
(c l r , c a r r y)

; ; c a r r y - o u t i n r e g i s t e r ' c a r r y '
(b c l r , (÷ a b l g l t - s l z e o~set) ,y)

; ; b ranch i f no b i t £n the c a r r y - o u t p o s i t :
((b¢c he) , done-add ing)
(move '1 . c a r r y)

, done-add lng . . .
)

where offset is an artifact of the pointer encoding scheme
for fixnums. The code-generator interface for this kind of
function specifies that arguments 'x ' , 'y', and 'carry ' must
be located in da ta registers, and it also specifies that the
two results are located respectively in the registers where
'y ' and 'carry ' were received as input. For more details
on the code generator features, see [Brooks 1986].

However this definition is a little too bare; further
analysis will show that , for addition, the more useful
'lower-level' operation is defined as 'Add the i ' th bigit
of the bignum x, plus the carry-in, into the j ' t h bigit of
blgnum y, and return the 'carry-out ' . With the latter

definition, the Lisp-written additive algorithms will be
dealing only with O's and l ' s for the carry-out /carry-ln
arguments, and various indices into the bignums. Thus
the additive algorithm~ can be writ ten in such a way as to
be unaffected by the bigit size. In a section below, we will
exhibit a MC68000 version of this expanded definition,
called ' p r l a l t i v e - a b i g l t - r e f - a d d - l n t o - a b l g i t - r e f '
to show tha t it isn ' t any more difficult to put this one
into the code generator than it is to put the simpler def-
inition above in.

Regardless of the primitive used, the 'Classical ' algo-
r i thm calls for adding two abigits together and propogat-
ing the carries; if one argument is shorter than the other,
then a separate piece of code may continue the carry pro-
pogation. An interesting problem for the two's comple-
merit format is to know when overflow has occured. The
steps of addition, for two's complement format, are ex-
actly the same regardless of whether one or both argu-
ments are negative, but the detection of overflow~when
the result bignum has to be 1 bit larger than the larger
of the two arguments-- is not as obvious as with signed-
magnitude representations. A carry out of the high-order

179

bit of the accumulation does not neeescarily imply over-
flow; only if the carry out of tha t bi t position does not
equal the carry in to it. See, for example, the expressions
denoting how the MC68020 calculates separate Overflow
and Carry bits for its two's complement addition, found
on page A-3 of [Motorola 1985]; a '~ranilla ", Lisp-only
version of the addit ion algorithm will emulate this 'hard-
ware ' test one way or another.

In the description of the primitives for addition and
subtraction, 'carry-in ' and 'carry-out ' as well as 'borrow'
and 'borrow-back' all refer to a 1-bit quan t i ty - -a 0 or a 1.

2.4 Bigits [or Multiplication Algorithm

The 'bigi t ' si tuation is not quite so pleasant for the
multiplication algorithm as it was for addition. When
coded in Lisp, there are many lines of code that ref-
erence intermediate quantities as large as a full mbigit.
Worse yet, when coded in Lisp, the lowest-level, 3-input-
2-output multiplier shows that the mbigit size must be
less than half the maximum fixnum size.
(defun p r i m i t i v e - m b i g i t - n u l t i p l y (c a r r y x y)

; ; H u l t i p l i e a ' x ' t i n e s ' y ' . adding i n
; ; t h e ' c a r r y ' ;
; ; Re turns two v a l u e s : t he low h a l f of
; ; t h e r e s u l t , and the h igh h a l f .
(l e t ((p r o d u c t (÷& c a r r y (*k X y))))

(v a l u e s (Idb (b y t e a b l g l t - s S z a O)
p roduc t)

(l d b (by te a b l g l t - s l z e a b l g l t - s l z e)
p roduc t))))

When 'x ' and 'y ' take on values of the largest bigit, the
intermediate product will be twice as long, This implies
that the mbigit size must be less than half the fixnum
size--30 bits in Lucid Common Lisp- -or at most 14 bits.
Because 14 is an unwieldy access size, an mbigit size of
8 bits was chosen, /or the Li , p.only development (but see
§2.2.3 for a discussion of 14-bit alternatives).

If z and I /a re integers, how big, then, can the prod-
uct z * y be? Theorem 1 below gives the answer, which
is of use when allocating memory space for the result of
a bignum-by-bignum multiplication. We don ' t want the
multiplication routine to allocate extra space needlessly,
nor do we want it to be caught short by one bit at the
very end!

DEFINITION: The integer-length o f an integer z is the
non-negative integer n such that

2 n - I <_z < 2 n i f z > 0

--2 n - I > X >_ --2 n if X < 0

0 i f z = O

This part icular definition focuses on the notion tha t in-
spired the name, i.e., the length of the bit field capable
of holding the number in binary notation. Its format
is part icularly useful in proving Theorem 1 below. (It

should be trivial to prove this definition equivalent to the
one found in [Steele 19841, which is based on a form like
[log~ ...].) The following obzervation immediately fails
out from this definition.

COROLLARY: The number o f bits needed to rep-
resent an integer x in two's complement format is
integer-length(z) + 1.

THEOREM I. Let z and II be non-zero integers, with
integer-lengths respectively o f n and m; then either

lnteger-length(z * y) -- n + m

or

integer-length(z * y) = n + m - 1
except when both x and y are a negative power of two,
in which case

integer-length(=, I/) = n + m + 1

First , assume tha t both z and y are positive. By the
definition of integer-length, we have

2 ~ -~ < z < 2 ~ (1)

2 " - 1 < U < 2 m (2)

and by multiplying these inequalities together, we obtain
the following bounds on integer- length(z , y):

2 "+m-2 < z * ~ < 2 "+m (3)

Splitting this interval in half about the point 2 n+m-I , it
is clear that one and only one of the following holds true:

2 " + m - 2 <_ z , p < 2 " + ' - 1 (3 1)

2 " + m - I < = * V < 2 "+m (3T)

Equation (3 ~) is equivalent to saying that
integer-length(z * y) = n + m - 1, and equation (3 1") is
equivalent to integer-length(z * y) -- n + m.

Now, assume tha t z is negative, but y positive. Then
we obtain (1-) by the definition of integer-length for neg-
ative integers:

--2 n - I > z > --2 n (1)

2 " - 1 < v < 2 " (2)

Multiplying together the inequalities again, z * 11 will be
bounded as follows:

- -2 n + m - 2 > Z * y > - -2 n + m (3--)

and by the same reasoning as above that led to the split
of equation (3) into (3 ~) and (3 T), we have the result
tha t in teger- length(z , II) is either n + m, or n + m - 1,
but by reference to the definition for negative numbers.

A completely parallel case holds when y is positive,
but x negative.

180

Now aasume that both z and y are negative; then
from the definition

- 2 ~-1 > z > - 2 ~ (i)

- -2m- t > I/ ~-- - - 2 " ~')

and again, by multiplying inequalities, we have

2 ~+"~-2 < z * ~ _< 2 "+m (3')

which can be factored into the following two equations,
one of which, equation (3), we've already covered:

2n+nt-2 ~-- = * l / < 2n+m (3)

z * 7 / = 2 n + " (3 t)

That is, equation (3') implies that one, and only
one, of equations (3) and (3t) is true. Equation
(3) covers the case when integer-length(z * y) is ei-
ther m + n or m + n - 1. The only way that
equation (3t) can be true is if z = - 2 n and y --
- 2 m, i.e., both z and I/ are a negative power of two.

Q.E.D.

In fact, a case to watch out for is when either z or y is
a negative power of 2; whereas integer-length[2 '~] = n + 1,
we have, oddly enough, integer-length[-2 ~] = n How-
ever, integer-length[-2 n + k] = n + 1 for 0 < k < 2 n.
Thus there are many places in the coding of these bignum
algorithms that special-case the computations when one
or more of the arguments is a negative power of two-- in
part icular when estimating the length required to hold an
additive operation that may cause some argument to be
negated (i.e., converting - 2 Jv into 2 N increases it 's inte-
ger length by one). Note also that a minimal field width
to hold a integer representation in two's complement for-
mat is exactly one greater than the integer-length of that
integer.

The primitive operation actually used in the multi-
plication algorithm is the basic component of the "Clas-
sical" multiplication method, and is a bit more complex
than the 3-input, 2-output multiplier shown above.

(defun p r Lmlt lve - m b l g l t - m u l t I p l y - add
(c a r r y m u l t i p l i e r a u l t l p l $ c a n d addend)

-'; Bas ic 4 -1npu t . 2 -ou tpu t uns igned
; ; mul tLp lLer , wi th a d d i t i v e c a r r y i n .
; ; Returns two v a l u e s : low h a l f of t he
; ; p r o d u c t / s t m , and the h l g h - h a l f
(l e t ((a c c t m u l a t l o n

(+& c a r r y
(*k n u l t L p l L e r mul t lp lLcand)
addend)))

(va lue s
(logandk acctmula tLon mbLgLt-mask)
(ashr& acc tmula tLon m b l g l t - s l z e))))

Note that the carry mbigit may be any value between 0
and 2 mbigit'*ise - 1 inclusive. The resultant combination,

the product and sum, is

multiplier * multiplicand + carry + addend

Let m = mbigit-size be the number of bite per mbigit;
then the maximum value obtained by the combination
above will be

(2 " - x) , (2 " - I) + 2 , (2 " - 1)

--- 2 2 " - 2 * 2 " + 1 + 2 . 2 m - 2

---- 22m - 1

The result will thus be representable in two mbigite, and
the two value~ returned will each be an mbigit; one will
be stored as par t of the part ial product accumulation,
and the other will be used as the carry to the next
p r i n i t i v e - m b L g l t - n u l t L p l y - a d d call. See the discus-
sion of 'Algori thm M' in [Knuth 1981].

There are separate functions for multiplying two
bignums together, and for multiplying a fixnum by a
bignum. In the lat ter case, there are a number of oppor-
tunities for optimization, primarily when the multiplier is
merely one mbigit, and thus there need be no loop over-
head to cycle through the mbigits of a bignum multiplier;
also, the cases of multiplying by - I , 0, or I will come to
this function, and can be dispensed with quickly there.
Additionally, the lowest-level step is actually producing
the bigite of the product , rather than producing interme-
diate bigite which would subsequently have to be added
into the final product.

If the abigit size is increased, one would expect a
linear speed-up for the additive operations; but many
calls to the multiplication and division routines will ex-
hibit a quadratic speed-up. For suppuse z and y are
bignums of about n mbigite; then the "Classical" mul-
tiplication algorithm takes n 2 primitive multiplications
and 2n 2 primitive additions also (adding in the carry is
counted separately from adding in the low-order part of
the result to the accumulating partial product). So when
the mbigit size is doubled, the number of mbigits in each
operand is decreased by a factor of 2, and the number of
primitive multiplications subsequently required becomes
(n / 2) 2 = (n 2) / 4 , f o r a speed-up of a factor of 4.

2.5 Bigit Size/or Division Algorithm

The division algorithm is essentially 'Algori thm D'
as found on page 257 of "The Art of Computer Program-
ming, Volume 2, Seminumerical AlgorithmA n by Knuth
[Knuth 1981]; but with minor variations. In particular,
the normalization used is that most obviously implied by
Knuth 's "Theorem B ~ on page 257--namely the divisor
is shifted until the hi.order bi~it is greater than or equal

181

to 2dbilit'leneth/2; this is equivalent to saying that the
leading divisor digit in decimal notation is 5 or greater.
The dividend is moved into a resource-allocated tempo-
rary bignum, and the bigits of both the quotient and re-
mainder are produced 'in place'; of course, the dividend
must be shifted by the same amount corresponding to the
divisor normalization.

2.6 Endion-ne6s:

The primitive access to bignums is from the little-
endian point of view; namely, increasing the "index of
access" will increase the significance of the bit fields in-
volved. Unfortunately, the MC68000 series of machines is
fully big-endian--it is byte-addressable, and when bytes
are packed into a half-word (into a 'word', in Motorola's
terminology) they are packed with the higher byte ad-
dress being the bits of lesser significance. Even the main
addressing mode of the ADDX instruction, memory-
to-memory with auto-decrement, is biased toward big-
endian for full words (i.e., larger word address mean lesser
bit significance). We prefer little-endian since that is the
protocol parallel to vector accessing and to the arguments
of the LDB function; also, it seems to be the protocol that
more modern computers accept. Thus we have the incon-
gruity between the machine's preference for word format,
and that imposed by the little-endian approach. Since
our approach is only visible when coding the lowest level
access and update primitives, it is perfectly acceptable to
pack and de-pack according to any pattern of scrambling

The table labelled "Memory-access Modifications for
Big-Endian Host" indicates how the memory access must
be modified to maintain the illusion of little-endian in
a big-endian host such as the MC68000. The leftmost
column of the table indicates how one may chose to pack
the bits of a bignum into the computer's memory (i.e.,
how bytes and half-words are combined into full word
chunks); the phrase "Sbit/16bit* where 8bit and 16bit are
each either "Big" or "Little", indicates that the "8bff'
endian mode is used for packing bytes into a half-word,
and that the "16bit" endian mode is used for packing half-
words into full words. The remaining columns of each line
list the modifications necessary to the primitive accessors
for that particular layout. Two modifications potentially
exist for each accessor: one to modify the index of access,
and the other to permute the bits of the unit accessed. A
form like "#bxxxx" means "change the low-order bits of
the index by xor'ing them with the bit pattern 'xxxx'";
the phrase "SwapB" means to swap the bytes in each
half-word of data; the phrase "SwapW' means to swap
half-words within a full (32-bit) word of data; and finally
"~-*" means "do nothing".

Since Big/Big is the preferred ordering of the
MC68000, then only the choice of Big/Big packing will
permit straightforward 32-bit access. For a little-endian
machine such as the VAX, the entire last line of the table
would be "do nothing" entries (and there would be no
other "do nothing" entries).

MEMORY-ACCESS MODIFICATIONS FOR BIG-ENDIAN HOST

Packing
Big/Big
Big/Little
Little/Big
Little/Little

8-Bit Access

#b l l
#b01

16-bit Access 32-bit Access

#bl0 ~-~

#bl0 #bl0,SwapB
SwapH
SwapB

SwapB SwapH,SwapB

a word of bits into a machine full word [but, we cannot,
at this level compensate for the ordering of full words].
So we are concerned with (I) which format the machine
uses--his- or little-endian, (2) which way we want bytes
to pack into a half-word, and (3) which way we want
half-words to pack into full words. One reason why (2)
may not be the same as (3) is that the relative cost of
compensating for one may be much worse than compen-
sating for the other; for example, on the MC68000 series,
(3) may be compensated by a SWAP instruction, which
is among the fastest, whereas (2) would, in a 'worse' case,
be compenstated by two SWAPs and two ROLWs, with
the ROLWs being relatively expensive.

It would appear that one should choose a represen-
tation that permits the most common access to be done
with no ~pat~h ups". For example, if 16-bit access is
to be favored, then choosing big-endian for bytes within
the half-word, but little-endian for halfwords within the
(Ions) word is the best choice; indeed, the "vanilla" Lisp-
coded additive algorithms would wind up stressing the
16-bit access. However, it is most likely that at some
point in development, a porter will want to have at least
some of the additive primops "in machine language" (in
the code generator), and thus the porter should bias his
choice towards the eventual preference of 32-bit access;
that is, he would favor the case that could possibly lead
to the most efficient machine language instructions being
used in the inner loop.

182

3. N e w A r i t h m e t i c P r imi t ives

Lucid's biguum functions are written under the as-
sumption that about two dozen or so primitive functions
exist. Not all of these are truly primitive, in that they
are simply macros (or compile-time macros--a Lucid ex-
tension) which expand into simple lisp code using the
' true' primitives. In the interest of conservation of printed
space, only the ' true' primitives will be listed and ex-
plained here; these are the ones that have been put into
the code generators of one or more of the compiler's tar-
get machines, or for which there might be some additional
speed-up to be taken if they were so implemented.

For example, a b i g i t - c a r r y - p r o p o g a t e - t h r u - b n is
a function which propogates an additive carry one abigit
at a time; it uses one of the lower-level primitives listed
below, and is merely a short, Lisp-coded loop. It is very
unlikely that putting it into machine language will speed
up any interesting benchmark, because even if its time
were to go down to zero seconds per loop iteration, it
just doesn't do that many iterations. Carries don' t pro-
pogate far, on the average. Thus our main concern is that
the short, simple p r l a l t l v e - a d d - l n t o - a b i g i t - r a f be
as ei~cient as possible.

(defun ablgSt - c a r ry -p ropoga t e - t h ru -bn
(bn a s t a r t l sendS)

(loop
(when (=& a s t a r t l aendl) (r e t u rn 1;))
(unless (t n c r e m e n t - a b i g i t - r e f 1

(ABIGIT-REF bn astart$))
(return nil)) ; 'carry' stops here:

(incfk astartl)))

where I n c r e m e n t - a b l g l t - r e f is a macro:
(defmacro t n c r e m e n t - a b i g t t - r e f

(amount (iguore blgnum index))
' (p r i m i t i v e - a d d - i n t o - a b i g i t - r e f

• amount .btgnua . index))

However, a b S g t t - c a r r y - p r o p o g a t e - t h r u - b n is com-
piled 'in-line' in the few places where it is called. A com-
plete definition of 'primitive-add-into-abigit-ref' follows
below.

The "new primitive" function names are listed imme-
diately below, and following that is an interface descrip-
tion of their functional behaviour. The subcategories of
division are labelled with the names of the steps in 'Al-
gorithm D' ([Knuth 1981], page 257) wherein they are
used.

3.1 New Primitive Names

Addition/Subtraction into Abigits
primitivv-add-into- abigit-ref
primitive-sub-fromoutof-abigit-ref
primitive- abigit-ref-add-into-abigit-ref
primitive-abigit-ref-sub-fromoutof-abigit-ref

Basic Multiplication Step
primitive-mbigit-multiply-add

Division:
D3: primitive-dbigit-divide
D3: dbigit-trial-quotient-toobigp
D4: primitive-dbigit-multiply-eub
D6: primitive-add-into-dbigit-ref

Word-at-a-time Copying
bignum-word-replace
bignum-wor d-negate-into-biguum
bignum-word-zero

Word-at-a-time Comparisons
bignum-word-comparison

3.2 Inter/ace Specifications

3.2.1 Addition~Subtraction into Abigits

fn: p r imi t ive -add- in to -ab ig i t - r e f
args: ~rry- in z bn i
fn: p r imi t i ve -zub - f romou to f - ab ig i t - r e f
args: borrow.in z bn i

Adds (or subtracts) a fixnum into the i ' th abigit of
bignum bn, modifying it in place. In the addition case,
the fixnum added is z + carry.in; in the subtraction
case, the fixnum subtracted is z + borrow-in. In both
cases, the carrys and borrows are either 0 or 1.

Returns the generated carry-out (or borrow-back) as a
fixnum 0 or 1.

fn: p r iml t ive -ab ig l t - r e f -add- in to -ab lg i t - r e f
• rss: carry.in src i dst j
fn: p r iml t ive -ab ig i t - r e f - zub- f romou to f -ab ig i t - r e f
ergs: borrow-in ~rc i dst j

Adds (or subtracts) the i ' th abigit d bignum arc, into
the j ' t h abigit of biguum dst, modifying &t in place.
The carry.in (or borrow-in) is treated exactly as in the
function 'primitive-add-into-abigit-ref' (or 'primitive-
sub-fromoutof-abigit-ref') described above.

Returns the generated carry-out (or borrow-back) as a
fixnum 0 or I.

3.2.2 Basic Multiplication Step

fn: p r im i t i ve -mb ig i t -mu l t i p ly - add
args: carry-in multiplier multiplicand addend

Computes addend + multiplier • multiplicand + carry-in,
where all arguments are mbigits.

Returns two values, the low-half of the result and the
high-half, as mbigits.

183

3.2.3 Division

fn: pr im| t iv~- db ig i t -d iv ide
args: divisor di~n'dend-low-hulf dividend-high.half

The three arguments are dbigits, divisor is divided into
dividend.low-hull] dieidend.hifh.hal/.

Returns two results, the quotient and the remainder of
that division, as dbigits. [Remember that ~1 ~ here
means ~juxtaposition ~]

fn: db ig i t - t r i a l -quo t i en t - t oob igp
args: Vhi-1 ~ Uj-1 r

Arguments are the intermediate quantities of 'Algorithm
D', step D3, of [Knuth 1981], where an estimation of
the next quotient digit, ~, is being made.

Returns non-NIL iff Vhi-I • ~ > r [U j - I . [Remember
that ~[" here means ~juxtaposition "]

This test will be true for all cases where the trial quotient
digit, ~, is 2 too large, and will be true for almost all
cases where ~ is 1 too large. The division algorithm
simply decrements ~ until this test is passed; then, on
the average, two out of 2 dz~ 'mt triak will pass with
still too large by 1, and step D6 of 'Algorithm D' will
be necessary.

fn: p r imt t lve -db ig l t -mu l t i p ly - sub
arp: borrow-in multiplier multiplicand minuend

Used at step D4 of 'Algorithm D' of [Knuth 1981].
This function is almost exactly like primitive-mbigit-
multiply-add except that (1) the two additive opera-
tions are subtractions instead of additions, and (2) the
arguments are dbigit-sized instead of mbigit-sized [but
probably dbigit-size is the same as mbigit-sise anyway].
Computes a result

minuend - multiplier * multiplicand - borrow.in.

Returns two values, the low-order dbigit of the result in
two's complement form, and the borrow-back gener-
ated, which is non-zero only when the result is nega-
tive.

Let the two's complement form of the result be z [y. The
first return value is just y, which can be computed as

(ldb (byte db lgJ . t - s ize O) r e s u l t)

but in the case when z is non-zero (i.e., when
the result is negative), the generated borrow-back is
2 dbigit'sise - z, which can be computed as

(ldb (byte d b i g i t - s i z e O)
(- (ldb (byte d b i g i t - s i z e d b i g i t - s i z e)

r e s u l t)))

I

fn: p r imi t lve -add - in to -db ig l t - r e f
args: carry-in z bn i

Used at step De of 'Algorithm D' of [Knuth 1981]. This
function is exactly the same as 'primitive-add-into-
abigit-ref', except that dbigits are used rather than
abigits. Note, that even when the dbigit size is ex-
tended (to 16, from 8), a single dbigit itself wil| tlt
within a fixnum, and this operation only needs 1 bit
more than a dbigit-size for intermediate calculations.

Returns the generated carry-out as a flxnum 0 or 1.

8.2.4 Word-at.a.time Copyino

fn: b i g n u m - w o r d - r e p l a e e
args: dst are dst-starti dst.endi src.utarti src-cndi

This primitive is used in numerous functions, and is some-
what akin to the r ep lace function of Common Lisp
([Steele 1984], page 252). The words of bignum dst are
replaced with those of bignum ere, beginning at word
index &t-starti of &t and word index src-starti of ere;
words are 'replaced' up to, but not including, the end
indices. If the subsequence intervals specified are not
of the same length, then the length of the shorter of the
two is taken; if either end index argument is nil, then it
is defaulted to the bignum-length of the corresponding
bignum.

Returns &t.

fn: b i g n u m - w o r d - n e g a t e-int o - b t g n u m
args: borrow dst are det.indez sre-lndez count

Used in unary minus on bignums, and when converting
negative arguments to positive format for multiplica-
tion or division, borrow must be 0 or 1; if it is O, then
the words of bignum &t are replaced with those of the
negation of bignum erc, beginning at word index &t-
indez of dst and word index src-indez of arc, for a total
of of count words; if borrow is 1, then dst is replaced
with the complement of arc rather than the negation.
This definition suggests an implementation strategy
whereby words are succesively subtracted from 0, with
a borrow being propogated.

Returns the final borrow-back. If the argument borrow is
0, then there will be a final borrow at the end if and
only if the bignum segment of are is all zeros.

The algorithms for multiplication and division are actu-
ally carried out in signed-magnitude form. Thus nega-
tive arguments to these algorithms must first be copied
and negated (into a temporarily-allocated bignum of
sufficient size); the result, if negative, must also be
negated (in place) before returning it. The author has
investigated multiplication algorithms which will work

184

with the two's complement bigits, just as the additive
algorithms will so work; but it appears as though the
implicit carry-propogations in these algorithms will, on
the average, be more costly than a quick copy-and-
negate. No such effort has been expended to try to find
a division algorithm that will work on complemented
bigits; likely there is very little to be gained, since the
copy/negate time is so small in comparison to the total
divison time.

Negative powers of two, in two's complement form, have
all their non-sign bits zero; the only case, then, when
'bignum-word-negate-into-bignum' ought to return a
non-zero carry is when the number being negated is
a negative power of 2 ~ r d ' ~ . This is the case where
2 N actually needs one more word to be represented
than does - 2 N (memory allocation is rounded up to
words).

fn: b ignum-word-zero
ergs: bn nwor&

Used in ASH on bignums. Zeros out the words of bignum
bn, from word indices 0 through nwords - 1.

Returns bn.
A function bignum-replace supports the Common Lisp

function ASH for bignums, as well as some inter-
nan data movement. Whereas 'bignum-word-replace'
described above is 'replace' on word boundaries,
bignum-replace is 'replace' on bit boundaries.

3.2.5 Word-at-a-time Comparisons

fn: b lgnum-word-compar lson
srgs: bnl bn~ wlength

Used in function 'bignum-bignum-compare', which sup-
ports equality and inequality comparisons.

Compares the two bignums bnl and bnt~, from the word
at index wlength- 1 down to word 0, and returns

(i) returns 0 if ~rgs are equal;
(ii) returns +1 if bnI > bnt~;
(iii) returns - 1 if bnl > bne;

3.3 Addition, Multiplication: Easy Examples

The inner part of the addition and subtraction loop
looks something like the code which follows. The smaller
of two addends is called 'addend' and is being added into
the other one, called 'sum'. [The coding has been changed
slightly to facilitate presentation; among other things,
we have abbreviated 'primitive-abigit-ref-sul>-fromoutof-
abigit-ref' by 'parsfar'].

(l e t ((carry 0))
(dotimes (i (ab tg i t - l ength addend))
(setq carry (parsfar carry addend i sum l)))

carry)

After this loop has finished, if car ry is non-zero and if the
length of sum is greater than that of addend, then a carry-
propogation step will take place. [Note: ab ig i t - l eng th
is the number of abigits in the bignum]. See the intro-
duction to §3.0, where a sample definition of 'abigit-carry-
propogate-thru-bn' is presented.

Virtually all the speed-up on the factorial benchmark
is due to increasing the mbigit size from 8 to 16. In order
to deal with the intermediate 32-bit result, 'primitive-
mbigit-muitiply-add' must be coded in machine language;
see §2.4 for a Lisp-written version of the primitive. Here
is the version for the MC65000 series, when the abigit
size is 16:

(defprlmop primlt~tve-mblglt-multlply-add 4 2
;; Basic 4-1nput, 2-output unsigned
;; mul t ip l i e r , with addi t ive ca r ry - ln
;; Returns two values: the low half of
;; the product/sum, and the hlgh-half
: a r t s ((¢a r ry - ln dreg) ;Ll l arguments

(mul t ip l ier dreg) ; are passed in
(multiplicand dreg) ; thru data
(addend dreg)) ; r eg i s t e r s

: e l l s n i l
: r e s u l t - l o c '(VALUES ,mul t ip l ie r .addend)
:coda ' ((f i xnua - to - l ach ine .mul t ip l ier)

;; LAP macro: typ$¢al ly 1 rea l i n s t .
(fixnum-to-machine ,multiplicand)
(mulu ,mul t ip l ie r ,multiplicand)
(add . ca r ry - in ,accumulation)
(fixnum-to-machine .accumulation)

;; add in the product to the
;; accumulation

(add .multiplicand ,accumulation)
(c l r ,mul t ip l ier)

: ; a t r i p out the low-half of the
; : accumulated product

(~ovew ,accumulation ,mul t ip l ier)
(machine-to-fixnum .mul t ip l ier)

;; s t r i p out the high-half too
((c l r w) .a¢cuaulatlon)
(swap ,accumulation)
(machine-to-fixnum ,accumulation)))

8.4 Divleion is Even E~ier

The paradigm above for 'primitive-mbigit-multiply-
add' is, in fact, exactly the same required for 'primitive-
dbigit-multiply-sub', which is the important part of the
"Classical ~ division algorithm---step D4 on page 258 of
[Knuth 1982]. A little analysis reveals that when divid-
ing a 2n-dbigit number by an n-dbigit number, there will
be about n invocations of 'primitive-dbigit-divide'--the
various estimations of the trial quotient bigits, which are
almost always right (according to a variation of Theorem
B on page 257 of [Knuth 1981]). But that division will
also require on the order of n 2 invocations of 'primitive-
dbigit-multiply-sub'. Thus the "Classical ~ bignum divi-
sion algorithm actually trades primitive division steps for
primitive multiplication and addition steps.

185

Let us trace the calculations of 'primitive-dbigit-
multiply-sub' when bits-per-dbigit = 4 and the argu-
ments are 3, 2, 5, and 15.

(pr4mlt lva-dblgl t -mul t lp ly-sub 3 2 8 #xF)
-> (- (- #rY (* 2 S)) S)
m> 2

and thus the low-order dbigit is 2, and the generated
borrow-back is 0. But in this example

(p r ~ I t i v e - d b l g l t - m u l t l p l y - s u b 6 8 7 9)
=> (- (- 9 (* 8 7)) 6)
=> -53 = #x-38

the result is negative. Now since
#x-36 = -(16,16) + #xCB, then #x~B is the 2's comple-
ment format of #x-36, expressed as two hex digits. Since

\#X35 = -1"(16"16) + \#xC*(16) ÷ \#:xB(1)

thus the low-order dbigit is 11 (or #xB), and the generated
borrow-back is 24 - #xC = 16 - 12 = 4.

The primitive 'dblgit-trial-quotient-toobigp' is the
code about which Knuth says on page 258 of [Knuth 1981]
"The ... test determines at high speed most of the cases
in which the trial ~ is one too large, and it eliminates
a/l cases where 0 is two too large." This primitive would
be called n times in the example of the previous par~-
graph, so its time performance may not be critical; but
both it and primitive-dbigit-divide would have to go into
machine language when the dbigit size is about half the
fixnum size or greater.

4. Compara t ive Performances

A number of timing comparisons are exhibited be-
low, to demonstrate two things: (1) that placing the seven
prototype new primitive operations in the compiler's code
generator will yield speed-ups of factors from three to
seven on some common bignum benchmarks compared
to using the purely Lisp-written implementation, and (2)
that this minimally-extended Lisp implementation will
perform within s factor of three to s factor of seven of
the "best po~ible ~ machine language implementations
[i.e., will not be one or two orders of magnitude slower].

4.1 8#me Tl~'cal Bignum Benchmarks

The factorial function is one of the easiest Lisp pro-
grams to remember; inevitably, someone who walks up to
a Lisp system will type it in and time it. We use

(defun f a c t (n)
(i f (< n 2) 1 (* n (fac t (I - n)))))

am the definition of factorial, and time it at n = I000, not
because this is a particul~'ly revealing benchmark, but
becau~se it may be very common--people will frequently
type it in by hand since it is so easy to do. Then we list

four more "micro-benchmarks* which test, respectively
(2) bignum-by-bignum division, (3) bignum printout in
base I0, (4) bignum-by-bignum addition, and (4) multi-
plication of a small fixnum by & "small" bignum [to aster-
taln whether the achievement of speed in the asymptotic
limit case has degraded performance on the smaller, com-
mon cases].

flO00 ffi
fl%f9 =

Pfl000 =
+riO00 =
20f19 =

(fac t 1000)
(t runcate f l000 f000),

where f�00 = (fac t 900)
(pr in t f I000)
(dotlnee (t 1000) (+ f lO00 f lO00))
(dotlaes (t 10000) (* 20 f 19)) ,

where f19 = (f ac t 19)

Note that one often must use some asleight of hand"
to prevent a compiler from optimizing aw~y the entire
DOT1MF.S expressions in the latter two lines.

Another prominent bignum-oriented benchmark is
FRPOLY ([Gabriel 1985], section 3.20) when run on the
r2 polynomial. We timed the 5'th degree case, the lO'th
degree case, and 15'th degree case, and we present the
results respectively as FR2-5, FR2-10, and FR2-15. The
5'th degree case does not use much bignum arithmetic--
161 additions and 260 multiplications of numbers smaller
than 2siS--these runs were done primarily for compar-
isons, to see how the amount of bignum arithmetic in
this benchmark is increased as the degree of the poly-
nomial increases. FRi-10 does 2424 additions of posi-
tire bignums in the range [ilas, 3ass), sad 74 smaller ad-
ditions; it do~ 2093 bignum-by-bignum multiplications
with arguments about equally distributed over the inter-
val [isa,22se). The actual distribution over that interval
is probably more like some bell shaped exponential, but
the variation between high and low points doesn't appear
to be more than about 50%.

FR2-15 is more bignum-intensive. It spends almost
all its time in the bignum routines for addition and mul-
tiplication, with the time spent in multiplication being
about three times greater than that spent in addition
[were our multiplication algorithm a faster operation, i.e.,
closer to the ideal machint--luguage implementation, this
ratio might be closer to two times greater instead].

Here is a histogram of argument sizes for those opera-
tions:

Argument Size

[2",2 s4)
Additions

56

Multiplications

76

[2e~,2sis) 1200 040

[21is , 2246) 2666 22050

[22se , 2 s1~) 37422 19800

Totals 41434 43766

186

Note: every call supplies two arguments; also, the
summations for + are not exactly the same as twice the
number of calls because there were two arguments in the
interval [2 s°, 2s2), which is not shown.

4.2 Timings of Lucid Common Lisp

The timings of Lucid Common Lisp implementations
were run on a Sun-2/160 workstation, a Sun-3/160 work-
station, and on a workstation built on a RISO-type ma-
chine. The results axe listed in Table I. To see the effect
of the endian-ness of representation, compare the sev-
eral trial* run in a little-endian format implementation
with the l,~ter big-endian format for the RIsc-type ma-
chine, wheee natural format is big-endian. In Table I,the
column headed "lmpP identifies the implementation by
its machine name and by the configuration of endian-
hess used in the implementation (see §2.6). The column
headed Bigit Sizes identifies the sizes of the three major
bigit c,~tegories--an n-tuple (¢t, m, d) mea~.s an abigit size
of 'a ' , an mbigit size of 'm ' , and a dbigit size of 'd ' . A
double-dagger after the ntuple, like (a, m, d)$, mesas that
the eIal~-W01~-itEPLtC~ primitives were also coded in
machine language.

Here is a summa~j' of the meanings for the lmpl column
of Table I, and of Table H:

lmpl Workstation 8bit/16bit
Entry Name Machine Endian-ness

68010L Sun-2/MC68010 Little/Little
68010B Sun-2/MC68010 Big/Big
68020L Sun-3/MC68020 Little/Little
68020B Sun-3/MC68020 Big/Big
RiscL RL~O-type Little/Little

RiscB RlSC,-type Big/Big
uVAX-H MicroVAX/H Little/Little

The RISC.type machine does memory fetch/store
operations in big-endian format, just like the MC68000
series; the VAX does memory operations in little-endian
format. Thus the preferred format for the MC68000 and
the Rlso-type machines.is Big/Big; that for the VAX is

Little/Little. To see the separate effects of a mismatch
between the machine's preferred format and the imple-
mentation format, a couple of runs have been made with
only this factor varying; in addition, in order to see the in-
cremental effects of increasing the mbigit size, the dbigit
size, and the abigit size, there are a series of runs made
with just these variations.

As of the writing of this paper, Lucid does not have
a complete implementation for the VAX; thus we have
timed the various benchmarks on the %anilla" imple-
mentation, which required only the 8-bit and 16-bit fetch-
and-store operations to be implemented (the rest being
in Lisp). Since there is a rather regular speed-up ob-
served on the other implementations when going from
the %~nilla" implementation to an "extended bigit" im-
plementation, we have projected po~iblc timings for an
"extended bigit" VAX implementation of Lucid Common
Lisp in the uVAX-H row with an asterisk.

The timings are measured over numerous runs, and
a reproducible minimum time is taken. Generally this
meant that any run with significant disk-swapping time
had to be discarded (but see exception below for the TI
Explorer). All of these implementations were done under
some form of Unix; therefore, the coarse granularity of
the Unix runtime metering must be considered. But still,
after discounting disk loading, meet of these runs would
not vary more than about 2% or 3% greater than the
times shown.

T A B L E I: T imings o f Luc id C o m m o n Lisp I m p l e m e n t a t i o n s

All times are in seconds. Bigit Sizes: (abigit, mbigit,dbigit)

Impl Bigit Sizes fl000 fl%f9 Pfl000 +fl000 20f19 FR2-5 F R 2 - 1 0 FR2-15
68010L (16, 8, 8) 80. 9.78 65.6 53.1 13.4 1.18 26.3 460
68010B (32,16,16)t 17.12 2.20 11.52 11.8 10.0 .776 12.32 143.4
68020L (16, 8, 8) 20.8 2.48 20.9 14.1 4.44 .386 7.64 125.6
68020B (32,16,16)'[" 4.60 .586 3.0 4.40 3.60 .280 4.14 45.2
RiscL (16, 8, 8) 59.2 7.5 46.8 20.7 8.6 .70 17.3 320
RIScB (32,16,16)t 10.5 1.30 7.20 5.1 5.1 .40 6.4 77.9
uVAX-H* (16, 8, 8) 56.5 7.06 35.2 28.1 10.44
uVAX-H* (32,16,16) t 12.5 1.6 6.2 7. 7.8

fl000 computes 1000! fl%f9 truncates I000! by 900!
Pfl000 prints 1000! +fl000 adds 1000: to itself 1000 times
20f19 multiplies 20 times 19! 10000 times FR2 is the Bignum-oriented FRPOLY Benchmark

187

4.2.1 Comparison Ior Specific E~'e¢~

By comparing Nveral stages of implementation on
the RlSO-type machine, we can note the incremental ef-
fect of, say, increasing the dbigit size and bringing the sev-
eral division-related pr'nnitive operations into the code-
generator.

These rune were compiled with an earlier version of
Lucid's compiler, which produced slightly leas efficient
code than that used for the rune in Table I above; con-
eequently, they will not be directly comparable. Further-
more, only a couple of runs were made on each bench-
mark, so the variance of times will be higher (e.g., the
difference between 11.2 and 11.4 is not significant, and
may not even be reproducible).

All times are in seconds.

Biglt Sizes: (abioit, mbigit, &igit

Impl

RiscL

Bigit Sizes

(i6, 8, 8)
RiscB (16, 8, 8)

RiscB (16,16, 8}

RiscB (16,16,16)

RiscB (32,16,16)

RiscB (32,16,16)~

TABLE IIA

fl000

59.1

Pfl000
47.1

62.1 50.2

12.4 46.4

11.2 8.5

11.4 7.4

11.3 7.3

The foltowing effects are noticeable:

o the time to adjust for endian mismatch in accessing
causes a 5~ to 7% slowdown, as seen by comparing
RiscL(16, 8, 8) with RIZcB(16, 8, 8);

o when the mbigit size is doubled (from 8 to 16), the
speed of computing large factorials is increased by a
factor of 5. In general, bignum-by-bignum multiplica-
tion would show a quadratic speed-up---doubling the
mbigit size would quadruple the speed--and that ef-
fect is visible in fl000 because in all multiplications
after the 255'th the multiplier is a double digit bignum
rather than a fixnum (because a mbigit size of 8 im-
plies that 255 is the largest fixnum representable in 1
mbigit);

o when the dbigit size is doubled (from 8 to 16), the
binary-to-decimal conversion is speeded up by a factor
of 5 1/2; the conversion algorithm is not just repeated
divisions by 10, but is also subject to the quadratic
speed-up mentioned for multiplication.

Results from FRPOLY show
o when the ~fast copy ~ routine BIGNUM-MOPd)-P~PLACE

is put into machine language, a realistic benchmark--
FRPOLY--is speeded up by over 4%. Before dismiss-
ing this factor of 1.04 as being of little or no value,

one should try to recall how often a couple of straight-
forward lines of code have yielded a 5% speed-up on
a non-trivial benchmark. As the saying goes, "nickles
and dimes eventually mount up into dollars, n i

All times are in seconds.

Bigit Sizes: (abigit, mbigit, dbigit}

Impl

RiscL

RiscB

RiscB

Bigit Sizes FR2-10

(16, 8, 8) 18.1
(32,16,16} 7.3

(32,16,16)~ 7.1

TABLE liB

FR2-i5

334.3

87.4

83.8

Table II does not contain sufficient information
to gauge the effect of doubling the abigit size; but
Table I is revealing on this matter, when comparing
the +f1000 times on the two runs RiscL(16, 8, 8) and
RiscB(32,16,16)~.

o when the abigit size is doubled, the additive algo-
rithm is immediately speeded-up by a factor of two; in
addition, another factor of two appears to come from
the fact that the code-generator template for the new
primitive operation is "hand tailored ~ and probably
better than the Lisp compiler could do by itself. Net
result: a quadrupling in speed. [However, the ratio
for the Sun-3/160, a MC68020 processor, was more
like a factor of three than a factor of four speed-up;
this effect has not been satisfactorily explained yet.]

4.8 Some Other Common Lisp lmplsmentations

The same micro-benchmarks were run on several
other Common Lisp vendors' implementations, u well as
a couple of predecessors to Common Lisp; these results
are presented in Table HI. PSL, Franz, and NIL, in the
latter part of Table HI are not Common Lisps, but are in
the same family of MacLisp descendents that led to Com-
s o n Lisp; timings from [Gabriel 1985] for the FRPOLY
benchmarks are included for comparison.

The timings for PrmssLisp are the cases designated in
[Gabriel 1985] as "TrlOn & LclfNo'--tall-recursion slim-
ination permitted, but conversion to "local ~ functions
calls not permitted. This is the configuration which moat
accurately matches the Common Lisps which were timed.
PSL was just barely implemented on the MC68000 archi-
tecture when Gabriel's tlm|ngs were compiled, and it may
not have been able to run FR2-15 then; NIL's bignunm
were put more into machine language sometime after the
Gabriel numbers were taken.

i A cautionary word to the wiN: it says "nick~ and dimes',
not "ponni~'. Before dickerin I around with epoed-ul~ below the
1% level, one would do well to reflect upon M~inter'e Dictum:
"Premature optimisation is The Source of all bugs.'--an aphorism
variously attributed to Larry Muintor of Xerox Pslo Alto Rmearch
Center.

188

T A B L E I l l : T imings of O the r Lisp I m p l e m e n t a t i o n s

All times are in seconds. Numbers marked by asterisk are from [Gabriel 1985]

Lisp/Machine fl000 f1%t9
Symbolics 3600 3.0 .29
Symbolics 3600t 2.78 .276
Symbolics 3645~ 1.80 .184
TI-Explorer .91 .124
FranzCL/68010 4.08 .500
FranzCL/68020 1.22 .150
VaxLisp 'uVAX-II- 2.57 7.9
VaxLisp VAX-750
NIL/750
PSL/VAX-750
Franz/750
Franz/68010
PSL/68010

P f1000 +fl000
3.16 5.2
3.03 3.88
2.50 2.6
1.94 4.23

15.1 3.23
3.57 .933

12.8 3.7

20f19 FR2-5
4.1 .21
3 . 9 4 ' .196
2.90 .147
1.11 . 1 3 4

6.55 .5
1.30 .183
3.5

.60*
2.15"
1.58"
1.18"

.85"
2.04*

FR2-10 FR2-15
'3.0 27.
2.93 21.8
2.45 15.0
2.2 17.8
5.8 53.
2.1 16.9

41.3
7.25* 57'

38.7* 479
27.7* 394

8.87* 155
16.53 188
37.6* {fail?)

fl000 computes 1000!
Pfl000 prints 1000!
20f19 multiplies 20 times 19! 10000 times

fl%f9 truncates 1000! by 900!
+fl000 adds 1000! to itself 1000 times
FR2 is the Bignum-oriented FRPOLY Benchmark

Designation
VaxLISp/uVAX-H
VaxLISp/VAX-T50
FranzCL/68010
FranzCL/68020

Machine
MicroVAX/II
VAX-U/750
MC68010 (Sun2)
MC88020

Implementor(s) and Trade name
Digital Equipment Corp., "VAX I~ISP"
Digital Equipment Corp., aVAX LISP"
Franz, Inc., ~Franz Common L i s f
Franz, INC., ~Fran~ Common Lisp ~

Symbolics 3600 Symbolics 3600 Symbolics, Inc., "Symbolics Common Lisp z
Symbolics 3645 Symbolics 3645 Symbolics, Inc., USymbolics Common Lisp z
TI-Explorer TI-Explorer M.I.T. and Texas Instruments

VAX-11/750
VAX-11/750
MC08010
MC68010 (Sun2)
VAX-11/750

PSL/VAX-750
Frauz/750
F,~,/68OlO
PSL/68010
NIL/750

Franz, Inc., ~FranzLisp w
Franz, Inc., UFransLisp~
Univ. of Utah, "Portahle Standard Lisp ~
M.I.T. (aNIL~: New Implementation of Lisp)

4.3.1 Benehmarldng Technique Tidbits

The timings on the Symbolics 3600 series appear to
be subject to much more variation than those of the Unix-
based machines above--timings exceeding more than 50%
of those reported above were quite common. In order to
get reproducible results, the trials had to be run under-
neath a WITHOUT-INTHRRUPTH form. During normal us-
age, shutting off interrupts would be an untenable situa-
tion; but in this study, the focus is on bignum implemen-
tation strategies and not on overall machine performance,
so its use may be excused. A dagger (t) by the machine
name are for those runs in which interrupts were turned
off; the other trials were taken normally.

The particular Symbolics 3645 machine used had a
faster disk than the other 3600 type machines, and it also
had an IFU where the other did not.

The ÷fl000 run on the TI-Explorer could not be
made without significant disk overhead, and the reported
time includes that amount; likely, that is why the Ex-
plorer makes such a relatively poor showing on this task,
whereas generally its micro¢oded bignums are signifi-
cantly faster than any other implementation.

It is noteworthy that when the Symbolics (ephem-
eral) garbage collector is turned off, the 3645 numbers
grow significantly worse: the 2.6 seconds of +fl000 be-
comes 4.5, and the 15.6 seconds of FR2-15 becomes 21.
For many bignum-orlented applications, the 'construct-

189

...... ~ ~ - ~ .<9

ing' up of bignums as intermediate returned values, and
the subsequent reclamation thereof, places a memory-
management load on the system that can dominate the
cost of the numerical algorithms. In this case, it was
probably the disk swap time to make room for the ever-
increasing address space; a properly working incremental
garbage collector will tend to re-use recently abandoned
cells before resorting to paging activity.

4.3.2 Comparison~ with Spmbolica $600

Interestingly enough, Symbolies bignums are basi-
cally written in Lisp; however, they have a few extra mi-
crocoded operations to prevent 'cousing' during the low-
level arithmetic steps. For example, they have a 2-input,
2-output 32-bit multiply so that their mbigit size is 32,
which surely helps explain the 3600's overall good per-
formance for a Lisp-written implementation. By way of
comparison, that is very roughly twice as fast as Lucid's
implementation on the MC68020, which currently uses an
mhigit size of 16 bits; but it is roughly twice as slow as
Franz Inc's implementation on the MC68020, which also
has an mbigit size of 16 bits, but which has a 'best possi-
ble' machine language strategy. {Both Lucid's sad Frsas
Inc's MC68000 series implementations are positioned to
run on the MC68010, and do not yet take advantage of
any of the extensions available on the MC68020.]

of the micro-benchmarks noticeably faster than the other
MC68000 implementations; ineed, Franz describes their
algorithms as being "in machine language" all the way.
So we use them as a comparison point for the Lisp-written
o n 4 ~ .

Table IV simply re-lists information tabulated eke-
where, but make it easier to compare the relevant parts.

If the figures postulated for a Lucid Common Lisp
on the micro-VAX/II are anywhere near correct, then we
could compare them with corresponding times for VAX
LISP. An interesting point of departure is that while ad-
dition •nd multiplication arc coded in a machine lan-
guage "best possible n way for VAX LISP, the division
algorithm is still in Lisp. This would be noticed by VAX
LISP having a factor of four or so edge in the addition
and multiplication micro-benchmarks, but in Lucid Com-
mon Lisp having a factor of four or so edge in the division
micro-benchmark.

5. Conclusions

Several prototype, simple primitive operations have
boon identified which, when put in the compiler as tern.
plates for the code generator, will yield striking improve-
ment8 in perform~os for the Lisp-written bignum ira-

T A B L E IV: Timings of Imp lemen ta t i ons on MC68000 Series

All times are in seconds.

~Machine
PSL/68010
Franz/6S010
Lucid/68010
Fren~CL/68010
Lucid/68020
Fra~CL/66020

17.12 2.20
4.o8 .5oo
4,6O .58e
1.22 . lS0

PflO00 +flO00

11.52 11.8
15.1 3.23

3.0 4.40
3.5T .933

10.0
6.55
3.60
1.30

2.04 ~
.85"
.776
.5
.280
.183

FR2-10 PR2-15
37.6* (fall?)
16.53 188
12.32 143.4

5.8 53.
4.14 45.2
2.1 16.9

Symbolic'e 3600 is descended from the MIT Lisp ms-
chine, which had bignums in micro-code. Tl 's Explorer is
tiso descended from the MIT machine, but is much closer
to it than the 3600 is; in fact, the Explorer's bignums are
in micro-code. Hence we can understand why the F,x-
plorer, which clocks in at about 3/4 the speed of a 3600
on many other benchmarks, surpasses the 3600 by factors
up to three sad a half on these micro-benchmarks.

4 .4 Compa~son oi New Primltiv~ mith "Best Poodble"

The only implementations directly comparable to
the publicly available Lucid Common Lisps are those
produced by F r m , Inc. on the MC68000 series of ms-
chines. Frans Inc.'s Common Lisp bignums run several

plementation. Speed-up factors of throe to five on real-
istic benchmarks have been o b ~ - v ~ . Furthermore, the
speeded-up versions were well within the goal of half in
order of magnitude of best possible in that the FRPOLY
benchmarks in a comparable enviromnent, but with "best
possible" machine language coding of b i~ums, were
only from 1.5 to 2.7 times faster; similarly the micro-
b,mchnmrks for addition, multiplication, and division
were only three or four times faster in the abest pesai-
ble I version.

These new primitive operations are indeed simple to
implement; those for the RlsG-type machine mentioned
above were prngrsmmed and fully debugged in well under
four man days by a Lucid employee who knew nothing
about the bignum algorithnm themselves, sad very little

190

about the the structure of the compiler's code generator.
Another Lucid employee, working on a port to another
kind of machine, coded up the primitives, and their aux-
iliary LAP macros, in only s couple of hours (but that
port has not yet reached the operational stage yet, so
it is not possible to debug them yet--we eagerly await
his results). This supports the hypothesis that the new
primitives are easy for a porter to handle.

Starting from a Lisp-written base is a viable strategy
for bign-mn, and Lucid is not alone in trying it. Appar-
ently declining the option of re-working the MIT Lisp
Machine microcode for the 3600, Symbolics opted for a
Lisp-written version even though they are not in the busi-
ness of porting their system to a variety of other hard-
w a r e .

6 . Acknowledgements

Thanks to Walter van Roggen of Digital Equipment
Corporation for measuring VAX LISP, to Richard Acuff
of the Knowledge Systen~ Laboratory at Stanford Uni-
versity for measuring the TI-Explorer and the Symbolics
3645, and to John Foderaro of Franz Inc. for measuring
their Common Lisp. Thanks to Leonard Zubkoff of Lucid
who implemented the new primitives for the RlSO-type
machine, and who compiled Table II above; to Jim Mc-
Donald of Lucid who researched the differences between
PSL/370 and YKT-Lisp bignums; and to Jim Boyce of
Lucid who type-set the tables of §4. Finally, thanks to
Jim Boyce and Frank Yellin for help in type-setting, and
to Jim McDonald, Harlan Sexton, Robert Stetak, and
Leonard Zubkotf for help in preofreexting.

]~erences

[Benson 1981] Benson, E. and Griss, M., SYSLISP:
A Portable LISP Based SIIsten~ Implementation
Language, Technical Report UCP-81, University of
Utah, February 1981

{Brooks 1086] Brooks, R., Poener, D, et. al., Design of
an Optimizing, Dynamically Retargetable Compiler,
Proceedings of the 1986 LISP and Punctional Pro-
gr~mming Conference, 1986

[Deutseh 1973] Dentsch, L. P., A Lisp Machine With
Very Compact Programs, Proceedings of the Third
International Joint Conference on Artificial Intelli-
gence, Stanford 1973

[Foderaro 1983] Foderaro, J., Sklower, K. The
FRANZ Lisp]vlanual, University of California,
Berkeley, April 1982

[Gabriel 1983] Brooks, R., Gabriel, R, and Steele,
G., Lisp-in.Lisp: High Per/ormanee and Portabilitlh
Proceedings of the Eight International Joint Confer-
ence on Artificial Intelligence, Karisruhe, West Ger-
many, August 1983

[Greenblatt 1977] Bawden, A., Greenblatt R., st. al.,
LISP Machine Progreu Report, Technical Report
AIM-444, MIT Artificial Intelligence Laboratory,
1977; also published as AD-A062-178 through Na-
tional Technical Information Service, US Dept. of
Commerce, Reports Division, Springfield VA

[Griss 1980] Griss, M. L., A Portable Implementation of
Standard Lisp, USCG-Operating Note ~47, Univer-
slay of Utah, August 1980

[Griu 1981] Griss, M. L., and Hearn, A. C., A Portable
LISP Compiler, Software Practice and Experience
11:541-605, June 1981

[Hearn 1973] Hearn, A. C., REDUCE I? Users Manual,
Technical Report UCP-19, Utah Symbolic Compu-
tation Group, University of Utah, 1973

{Knuth 1981] Knuth, D., The Art of Computer Pro-
gramming, Vol. If, Second Edition, Addison-
Wesley, 1981

IMcDonald 1985] Private communications from Jim
McDonald, who did the port of PSL to the IBM/370
at Stanford University's Institute for Mathmatical
Studies in the Social Sciences, in 1984.

[Motorola 19851 Motorola, Inc., MC68020 32-bit Mto
c roproceuor User's Manual, Prentice-Hall, 1985

[Moore 19T6] Moore, J Strother, The Interlisp
Virtual Machine Specification, Technical Re-
port CSL-76-5, Xerox Palo Alto Research Center,
September 1976

[Steele 1982] Brooks, R., Gabriel, R, and Steele, G.,
An Optimizing Compiler for Lezieallll Scoped LISP,
Proceedings of of the SIGPLAN '82 Symposium on
Compiler Construction, June, 1977

[Steele 1984] Steele, G., Common Lisp the Lan-
guage, Digital Press, 1984

{Utah 1982] The Utah Symbolic Computation Group.
The Portable Standard LISP Users Manual, Techni-
cal Report, Department of Computer Science, Uni-
versity of Utah, January 1982

[White 1979] White, 3on L, NIL - A Perspective, Pro-
ceedings of the 1979 MACSYMA Users' Conference,
190-199, MIT 1979

[White 1078] White, Jan L, LISP/S70: A Short Teeh.
nical Description of the Implementation, SIGSAM
Bull. 12,4 November 1978

191

