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N O T A T I O N  

In Lucid Common Lisp, there are internal nsmce used in 
the development of the system itself for all the. standard simple 
arithmetic functions that imply flxnum-only arithmetic; e.g., 
( loglor& x y) is basically the same as 

( the  ti.x~ua (1ogtor  ( the  f lxnua  x) 
( the fSxnma y ) ) )  

In the paper, use of names like '-F&' and '*&' will imply these 
semantics, and furthermore, the Lucid Common Lisp compiler 
ought to emit the most efficient, flxnum-only arithmetic in- 
structions for such operators. In the explanations below, note 
that 'I '  used as a operator does not mean 'logics] or,' as in 
the C language, but rather 'juxtaposition,' as in msthmetical 
logic. The sense of the 'juxtaposition' is base arithmetic; for 
example, when the base is 10, then 315 means just $5. In gen- 
eral, when dealing with "bigits'wbignum digits--Zlll means 
(+ (ash x b l t s - p e r - b l g S t )  y). 

1. I N T R O D U C T I O N  

Bignums--indefinltely large integers--have been a 
part of Lisp for a long time. They seldom figure into 
the more prominent AI applications--in fact, Interlisp 
(and its predecemsors) existed from the early 1960's until 
recent time ~ without them--but  in the area of symbolic 
algebra they are critical. Indeed, no modern Lisp could 
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be considered complete unless it offered a smooth, user- 
invisible transition between efficient machine numbers--  
' f ixnums'--sad those of larger size. Since they are so 
rarely used in common operations, their efficiency is of 
less concern than, say, arithmetic in general; yet one one 
would not want to have to fear them as a system compo- 
nent of totally unknown performance capability. 

Even in languages that  have long been standardized, 
such as Fortran If, there are subtle variances between one 

hardware implementation and another, and programmers 
have been known to latch onto these variations and even 
build dependencies on them in their programs [Profes- 
sor W. Kahan of UCBerkeley has a number of interest- 
ing tales to tell on this score!]. Yet the appearance of 
machine-dependencies in the user-level language would 
have little impact on the system implementor ur~¢ss the 
implementation is being done in that very language itself. 
The rise of Lisp-in-Lisp systems brings this issue to the 
fore. The Lisp machine developments on special-purpose 
hardware were among the first to  champion this approach 
(see: [Deutsch 19731; [Greenblatt 1977]), but  significant 
trends were already occuring along these lines for "stock" 
hardware (see: [Moore 1976]; [White 1979]; [Griss 19801, 
[Grisa 1981], and [Gabriel 1983]). In fact, Lucid Common 
Lisp is a just such Lisp-in-Lisp system, targeted towards 
many different machine architectures. 

In this paper, we shall investigate a technique for 
mediating between the extremes of, on the one hand a 
completely ad-hoc, machine language implementation for 
maximum speed, and on the other hand a purely Lisp- 
written implementation for transportability. The focus of 
our investigation is not on the rational algorithms them- 
selves, which are ¢uentially those termed "Clmsical"in 
[Knuth 1981], but  rather on the classification of their 
coding into a purely machine-independent part, a purely 
machine-dependent part, and a part that  can, electably, 
be placed in either category. 

We shall present a set of new primitive arithmetic op- 
erations that focus on the substantial activity of biguuma; 
these new operations may be coded either in Lisp, or 
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as machine language templates in the code-generator of 
the compiler. The bignum algorithms are coded in a 
machine- and implementation-independent fashion using 
these primitives, and are thus available without specific 
reference to the machine architecture at  hand. These 
primitives have been implemented with variatious in the 
target  machines-- the  retargeting p a r t - - a n d  variations 
in the degree of machine-dependence---the reconfigurable 
part .  

The primitives are ahighly-leveraged" in that  a mod- 
est amount of effort spent reconfiguring them as described 
below will yield a large pay-off in overall efficiency. Since 
the overwhelming amount of bignum code (indeed, the 
overwhelming amount of Lucid Common Lisp itself!) is 
wri t ten in Lisp, we depend upon an optimising compiler 
for a certain degree of efficiency (see [Steele 1982] and 
[Brooks 1986)] Performance increases are observed dur- 
ing the successive refinements of a configuration. 

Finally, we present numerous benchmark da ta  to 
gauge the performance of this design, both before and 
after the reconfiguring, and to compare its overall speed 
with that  of some other commercially available Common 
Lisp implementations, t 

1.1 The Problems of 'Porting' 

A Lucid Common Lisp implementation consists of 

o A very large base of Lisp code (on the order of 
106 lines) that  is machine- and implementation- 
independent; 

o A machine-specific code generator, which is par t  of 
a dynamically-retargetable (and generally machine- 
independent) Lisp compiler [Brooks 1986]; 

o A table-driven assembler--LAP, the "Lisp Assembly 
P rog ram ' - -wh ich  is easily tailorable to most machine 
architectures; 

o Several thousand lines of LAP-coded (i.e., machine 
language) routines which support  the virtual  machine 
environment and some of the operating system inter- 
faces; 

o A kernel image loader that  produces an executable 
format image for the target machine (the rest of 
the Lisp system, compiled for the target  machine, is 
loaded into the kernel to build a full Common Lisp 
image). 

I A8 thiJ work h~ only recently been completed, some paxts 
of the pedormtnce compatl,ons may be incomplete. Furthermore, 
the discmmions of portings to a few of the more novel architectures 
h~ to be limited by Lucid'8 contractual obligation not to divulge 
what port8 ate being worked on until the h~dw~e mtnuf&cturer-- 
the O~M contractor for whom Lucid is doing the work-- decides 
to amnotmce the product. It is expected that Hveral more more 
interesting port* will be free for public discussion by the time of 
the Lisp Conference in Augtmt 1986. 

Since there are numerous porte of the system to many 
differing machines, it  is advantageous to keep the amount 
of machine-specific code to a minimum. 

The goal for bignurus has been to strike a balance be- 
tween the tensions mentioned above- - tha t  is, to place a 
good deal of aknowledge" about bignums in the machine- 
independent Lisp code, and thus amortize the cost of de- 
sign, debugging, maintenance, etc. over the many porte, 
or implementations, in which very little, if any, bignum 
development would be done. Furthermore, the porters to 
" l a t e r  machines are generally not the same persons who 
wrote the first version of the machine-specific sections; 8o 
the larger these sections are, and the more intricate and 
delicate their design, the harder the porter 's  job becomes. 

Because the special knowledge of how bignuma work 
on a given target  machine is tied up in the compiler 's 
databases,  and because the Lucid Common Lisp compiler 
is dynamically retargetable towards numerous machines 
all at  the same time, we can call such an implementa- 
tion ' retargetable bignums'. See the paper in these con- 
ference proceedings about  Lucid's retargeting compiler 
[Brooks 1986}. 

Initially, a porter  may elect to do no special work 
for bignums, prefering to concentrate his t ime on reach- 
ing a moderately large, fully correct Common Lisp kernel 
subset. Then as t ime permits,  he may begin at  the lower- 
levels of the new arithmetic primitives (introduced to aid 
in the decomposition of the bignum algorithms), and put  
in as much work as desirable; he may then expect to see 
the reward of an increase in performance proportional,  in 
some degree, to the amount of work he has put  in. Sec- 
tion §2.2, of this report  describes the differing configura- 
tions based on two notions defined there: the machine's 
endian-ness, and the bigit sizes. The code-generator for 

the MC68000 implementations supports  all the configu- 
rations described, although a porter 's  chief concern will 
be the switch to larger bigits than the initial implemen- 
tat ion affords; this configuration change has been found 
to have the most payoff in performance. 

1.2 Performance Ezpectations 

The range of performance between a special-purpose, 
highly "tuned" machine language implementation, and 
a "vanilla", Lisp-coded one may be seen by comparing 
the port  of PSL [Uta~ 1982] to the IBM/370 with IBM's 
YKTLisp (a commercially available Lisp dialect devel- 
oped s t  the Thomas J. Watson Research Center in York- 
town Heights, New York). YKTLisp is descended from 
Lisp/370, which had L significant amount of its code writ- 
ten in 'best  possible'  machine language. Bignums were so 
coded, and were thus very dependent both  on the 370 ar- 
chitecure and on the part icular  implementation details 
of Lisp/370. PSL is at  the other extreme, with very lit- 
t l e  being machine specific; its blgnums are Lisp-coded in 
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a "vanilla* style. Multiplication intensive benchmarks, 
such as computing z I°°°, were generally about 300 times 
slower in PSL/370 than in YKTLisp; the person doing 
the port isolated a small subroutine in which the PSL ver- 
sion was spending most of its time, and by hand-coding 
that, the slowdown factor dropped from 300 to about 70 
[McDonald 1985]. 

Of course, a benchmark like z 1°°° is not a very help- 
ful one for most Lisp users, since it measures performance 
at or near some asymptotic limit; the relative behaviour 
of the algorithm may vary markedly in the 'smaller num- 
ber' ranges, where most realistic encounters with bignums 
will occur. Nevertheless, our goal has been to be not 
two orders of magnitude slower than 'best possible', and 
not an order of magnitude slower, but something within 
the range of a half order of magnitude-- something more 
akin to the relative discrepancy observed between highly 
"tuned ~ machine language and the output of a good com- 
piler. We think it would be acceptable for this portion of 
a Common Lisp to come with a factor of 3 to 7 of 'best 
possible', given its relatlve significance in the overall ap- 
plication spectrum. 

One very interesting observation is that the purely 
Lisp-written biguums come from Lisp implementations 
that were driven by symbolic algebra applications: 
PSL was driven by REDUCE [Hearn 1973], and NIL 
[White 1979] was driven partly by MACSYMA. Franz- 
Lisp [Foder~ro 1982] was driven partly by VAXIMA, 
a derivative of MACSYMA, and, although not Lisp- 
written, its biguums were in C rather than in machine 
language (and as the timings tables show, the speed of 
the C-wrltten version is in between the 'best possible' 
machine language and the purely Lisp-written versions). 
While AI research and applications do not, in general, 
seem to need much in the way of bignum support, it is 
counter-intuitive that the biguum-oriented applications 
would' favor portability over speed. It seems to suggest 
that ever-increasing speed in the asyraptot¢ may be pur- 
sued more for the interesting technical challenge it poses 
than for the fulfillment of a user-driven needs. [However, 
questions about application needs nearly always have to 
be addressed on an individual basis.] 

1.3 Factoring In Low-Levd Operatiorsa 

At some level, the machine dependencies can be 
encapsulated by the implementation within a language- 
specific feature, or module. One critical area implicit 
in the Lisp computation model is stack operations. Yet 
there are no primitives in Common Lisp for dealing with 
all the variations that occur in the notion of "stack'. On 
some machines there are a wide variety of instructions 
and operand modes that make stack-frame usage a fund,- 
mental part of any compiled function, whereas on others, 
there is no support. For these reasons, it seems wise that 

that Common Lisp specification not include such prim[- 
tires; yet the lowest-level aspects of compiled code must 
deal with them. For example, when • function definition 
specifies optional arguments ('&optional'), there must be 
runtime code that deals with extending the stack frame 

in much the same way that variable-binding contours ex- 
tend it. These are among the kinds of operations, along 
with the function calling protocol, that are time-critical 
and that apparently do not decompose directly into ex- 
isting Common Lisp primitives. 

Arithmetic, however, encompases many Common 
Lisp primitives. While advanced mathmetics may play 
a part in the implementation of functions such as, say, 
ATANII, a number of clever but simple tricks in the com- 
pUer'e code generator are very important for the basic ra- 
tional operations. For example, many implementors have 
independently discovered a suitable choice of tag layout 
in a 'tagged pointer' Lisp implementation so that generic 
+ may be compiled in such a way as to impose very little 
overhead when the arguments are fixnums. (Researchers 
at IBM's Yorktown Research Center used such a trick in 
the early 1970s in LISP/370--[White 1978]) In a typical 
port of Lucid Common Lisp, three very fast non-memory 
instructions--a logical 'or', a bit test, and a conditional 
branch--suffice to certify that the arguments are fLxnums. 
Admittedly this is slower than having just the one 'ma~ 
chine add' instruction (which could be emitted when ap- 
propriate compiler declarations are in effect) but there 
are many places where this difference just isn't important; 
especially in the RlSC-type machines, the extra register- 
to-register instructions begin to resemble microcode for 
the special-purpose Lisp machines. Of course, if one or 
more of the arguments to the function aren't fixnums, 
then some slower route will be entered; the bignum algo- 
rithms will be invoked by just such a route. 

2. Format  of  Bignums in Lucid C o m m o n  Lisp 

Bignums are stored-memory objects with a header 
word containing the length in bits. They are of a dif- 
ferent data type than any array, but in other respects 
they resemble simple bit vectors. There are low-level, but 
machine-independent, primitives to access 16-bit chunks, 
to access the length field, to allocate memory for one of 
a given size, and to test the type (i.e., BIGNUI~P). There 
are also access/update primitives for 8-bit chunks, but 
either one of the 16-bit or 8-bit primitives could be de- 
rived rather simply from the other given efficient fixnum 
versions of LDB and DPB. 

The interpretation of the hits of a biguum is as the 
two's complement representation of a number, with the 
higher-order accessor indices holding the more significant 
bits (i.e., the accessor primitives are 'little-endian'; if it 
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were 'big-endian' ,  then the lowest-valueu accessor index, 
rather than the highest, would designate the most signif- 
icant chunk of bits). I t  appears as though bignum im- 
plementations prior to the advent of Common Lisp used 
signed-magnitude representations, although there is very 
little, if any, documentation of those efforts. We chose 
two's complement format because there seems to be a 
feeling among many other Common Lisp implementors 
that  LDB should execute in constant time; and if LDB is 
applied to a negative number in signed-magnitude for- 
mat ,  then to be consistent with fixnum representation 
(which is two's complement on all the machines currently 
supporting Lucid Common Lisp) the bignum would have 
to he negated, or at  least part ial ly negated in order to 
fetch the proper bits. Due to carries, negating a bignum 
might involve accessing every word up to and including 
the byte of interest. We note also that  Symbolics Com- 
mon Lisp, VAX LISP and VAX/NIL have also gone for 
two's complement representation. 

The part icular  algorithms used are simply the so- 
called Classical Algorithms described in section 4.3.1 of 
[Knuth 1981]. Although we have investigated some more 

complex algorithms that  do show a significant improve- 
ment in the asymptotic behadours, we are also concerned 
with the bchaviour on relatively small bignums; a rule of 
thumb for programs that  are typically writ ten in Lisp is: 

• almost all numbers are fixnums; 

• almost all integers that  aren ' t  simply fixnums are 
smaller than a '?.-word' bignum; 

• almost all bignun~ that  are bigger than a '2-word' 
bignum are still smaller than a '4-word' bignum; 

• and so on. 

This may be characterized as a kind of 'Zipf 's L a w ' - -  
exponentially diminishing probabili ty of occurance as the 
numbers get larger. The author,  while at  MIT,  ex- 
perimentally verified this rule by observation of vari- 
ous technical and engineering applications in MACSYMA 
(MACSYMA, a symbolic algebra 'expert  system',  is cur- 
rently available through Symbolics, Inc., Cambridge, 
Massachtmetts). 

2.10pcratior~s on 'Words' 

]vVe use the term 'word'  to mean a chunk of storage 
large enough to hold a basic Lisp pointer; we also use it 
to mean the size of arithmetic that  the machine's ALU 
supports.  Normally this is the same size--32-bits for ma- 
chines like the MC68020--but there are a few ' rough'  
spots in the MC68010 (the ALU does 32-bit additions, 
but  only 16-bit multiplications and subtractions). When 
word-sized operations are available, it makes sense to ex- 
tend one or more of the bigit sizes in order to operate 
upon word-sized chunks. For example, a machine might 
not efficiently support  byte or half-word addressing; it 
could then be more than twice as expensive to fetch each 

half-word separately and operate  upon the half words, 
than to fetch and operate upon the whole word. 

Bignums axe allocated in units of a t  least one 32-bit 
word (a consequence of the memory manager for Lucid 
Common Lisp). Thus sign-extension will be to the 32-bit 
word, and this is required if any of the machine's 'word- 
sized' ari thmetic instructions are to be used. 

We seek operations that  can work on 'words'  at  a 
time, especially those for which the underlying primitive 
can be constructed with minimal effort. A good can- 
didate is BIGHtlM-W0Pd)-ItEPLACE; many machines have 
a very ehort ,  fast instruction sequence to do a block 
transfer of words (or of by tes - - i t  doesn' t  mat ter  here), 
and these sequences would be the target of a primi- 
tive tha t  copied the bits from one or more words of 
one bignum into another. Since it is desirable not to 
allocate new storage for intermediate operations, there 
are a number of places in our encoding of the 'Classi- 
cal '  algorithms where we do BIGNUH-¥OItD-ItF.PLACE, or 
BIGNUM-W0P.D-NEGATE-INT0-BI(~NUM (a variant that  're- 
places' with the negation of the source) into resource- 
managed, temporary bignums. The section on compara- 
tive performance shows that  even these copying steps are 
visible in benchmarks such as FRPOLY. 

While the compiler 's code generators may con- 
tain primitives that  handle 33-bit chunks (or 'machine 
words') ,  such is not the case with Lucid Common Lisp's 
fixnun~ which, in the current design, are limited to 
30 bits. This is the main reason why some primitives 
must be implemented direCtly by the code generators-- i t  
is not so much that  the compiler would produce terrible 
code for the Lisp-written version, but  rather that  when 
the chunk size for the algorithm is increased to a certain 
size, a few of the intermediate calculation values may 
exceed the flxnum capacity. We note that  a 'machine 
word'  need never be represented by a Lisp quantity; only 
the location of the 'word'  in question must be specifi- 
able. We refer to 'words'  as a normal object pointer and 
a word-sized index offset from that  pointer. Thus we 
haven' t  taken the step of creating a separate systems- 
implementation language, like SYSLISP [Benson 1981] 
or LIL (an undocumented 'Lispy Implementation Lan- 
guage' variously developed at  MIT and Symbolics during 
the early 1980's) 1, but  rather have chosen to extend the 
compiler in a very straightforward way. 

Nevertheless, we do have to arrange the bignum al- 
gorithms so that  they can take advantage of the speedier 
code-generator templates when available. A typical sort 
of approach is (1) do some primitive operation a bigit at 
a t ime until a word boundary is reached, then (2) 'whiz 

I One might view these languages u • kind of BCPL embedded 
in Lisp 
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along' using a different primitive that operates a word at 
a time, as long as a full word's worth of bits remain, and 
then (3) 'wind down' by going a bigit at a time, until the 
final end point is reached. We refer to this strategy as 
'Whiz-Along-By-Words'. The ca~ry-propogation part of 
the addition algorithm is a prime candidate susceptible 
to this kind of breakdown. 

Of course, if a 'blgit' is at least as large as a 'word', 
then there is not nearly so much advantage to 'Whizzing- 
Along-By-Words', especially if the Lisp compiler can ap- 
proach a good hand coder in efficiency. This isn't the 
case in most ports of Lucid Common Lisp now, because 
the fixnum sise is generally smaller than the word size. 

3.3 The Problem o/ 'Bigit' Size 

3.3.1 What is a 'Bigit' 

A 'bigit' is a 'bignum digit', and is thus an integer 
between 0 and R -  1 for some positive radix R; the size of 
a bigit, in terms of number of bits, will vary from imple- 
mentation to implementation as well as / tom algorithm 
to algorithm. In other words, there is a different bigit size 
for the addition algorithm than for the multiplication al- 
gorithm. We use the term 'abigit' to mean s digit in the 
range suitable for the additive algorithms (addition and 
subtraction); we use the term 'mbigit' to denote a digit in 
the range suitable for the multiplication algorithm; and 
we use the term 'dbigit' to denote a digit in the range 
suitable for the division algorithm. 

The option of non-uniform radices is exercised to 
achieve the highest efficiency within the other constraints 
of design. Sometimes these constraints are due to the 
hardware [the MC68010 hardware can only do a 16-bit 
multiply with 32-bit result, whereas other machines can 
do a 32-bit multiply with 64-bit result] and sometimes 
they are due to the amount code involved in the al- 
gorithm. For example, bignum-by-biguum division is a 
rather complex algorithm, and writing it in such a way 
that intermediate quantities are not held in Lisp variables 
would involve putting more into machine language t h u  
could perhaps be tolerated by the goal of 'easy portabil- 
ity'. 

3.2.2 Bifit Aceeuors 

All Lucid Common Lisp implementations support 
8- and 1e-bit aceeesors as primitives, which are re- 
spectively named BIIP.EF-8BIT and BIIP.EF-16BIT. The 
existence of machine instructions like MOVB make 
it an easy task for the porter to build these ac- 
cese/update primitives and to support the 'arithmetic' 
accessors det/cribed below by macroexpanding them into 
BIIREF-8BIT and BIIREF-16BIT. For abigits, mbigits, and 
dbigits, the access functions are named respectively 
ABIGIT-REF, MBIGIT-BEF, and DBIGIT-REF. Each one 

merely fetches a contiguous sequence of bits, and returns 
them as a digit in the radix of that type. For example, 
if the dbigit radix is 256 (= 2s), then the i'th auto-origin 
dbigit of x, ( a b l g l t - r e f  x i ) ,  can be computed by 

(nod ( /  x (expt 256 I ) )  256). 
Since the radix is a power of two, this could siso be ex- 
pressed as 

(Idb (byte 8 (ash I 3)) x) 

In addition to the bigit sizes introduced for the four 
basic rational operations, these routines deal with "xbig- 
its m, with accessor function named XBIGIT-REF. Xbigits 
are merely guaranteed to be a fixnum, regardless of any 
constraints or extensions in the implementation. When 
writing Lisp code to copy one bignum to another, for 
example, there is no particular reason to "pick up" and 
"put down" abigits, or mbigits~and in fact it would be 
impossible should they be extended to 32 bits. Further- 
more, the implementation of functions like LOGX01t should 
avoid dependencies on the particular coding developed for 
biguum addition; having an abstract, fixnum-sif~d higit 
ensures that there will be no conflict in the logical op. 
erators when biguums are "reconflgured" for more speed 
from the rational operators. 

Thus, with only 16-bit abigits, &.bit mbigits, and 
8-bit dbigits, and 16-bit xbigits, all the bignum algu- 
rithms are functional, being written entirely in Lisp us- 
ing fixnum arithmetic only. A port will have a working 
biguum implementation merely for the cost of duplicat,- 
ing some simple-bit-arra~" primitives. The port may later 
be reconfigured to use larger bigit sizes, which will neces- 
sitate some amount of "machine language" for the code 
generator, in order to gain speed. Improvements in speed 
might be sought by 'inching' a 16-bit blgit up to s non- 
word-aligned 24- or 2&.bit abigit, but the introduction 
of primitives that can take advantage of the full 32-bit 
word operations provided by virtually idl these mar.hines 
is certainly preferable. 

3.3.8 Unezplored Alternatives 

It is convenient to focus on bigit sizes of 8, 16, and 
32 (or possibly even 64), because of the existence of mum- 
or,/access iustructiotts that operate in these units. Some 
maghines have additional hardware or firmware to sup- 
port other sizes; e.g., the VAX instruction gXTZv should 
make it very easy to code accessors for any bigit size 
from I to 29, although it would very likely be slower 
than MOVe, MOVW, or MOVL when the bigit siam are 
respectively 8, 16, or 32. 

A question for further research would be whether 
it is profitable to use LDB to acquire a 14-bit bigit for 
multiplication and/or division in the '~anilla I case (in- 
stead of an &-bit bigit); the attraction would be possibly a 
quadratic speed-up/n the asgmpgote due to the increased 
bigit size, but this would have to be measured against 
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the slowdown of units conversions and bigit  access, es- 
pecially on machines like the MC68000 series. However, 
this issue is not very pressing, because we expect all Lu- 
cid implementations will sooner or later make the step to 
~machine language ~ versions of the new primitives. 

Another possibililty is to use only 14 out of every 
16 bits in memory; the bigit access function is merely 
B~IP.EF- leBIT, but  it would guarantee that  the bigit would 
be less than 2 t4. This would break the similarity between 
bignums and machine arithmetic, and would complicate 
the LDB function somewhat, although maybe not as much 
as signed-magnitude representation does; but  the real ob- 
jectious are the same as in the preceeding p a r a g r a p h ~ i t  
is a side-track away from the road to real "machine lan- 
guage" level arithmetic. 

2.3 Bigits for Additive Algorithms 

Abigits are non-negative integers less than 
2 abigit'sise. This says that  we need an (unsigned) adder 
that  is one bit  wider than the abigit size. Most machines 
manage to achieve an abigit size of exactly one word by 
keeping a carry bi t  around in the process status register, 
thereby extending the adder width by one bit.  For exam- 
ple, if the abigit s i z e - t h e  number of bits needed to hold 
an abigi t - - iz  N, then the intermedite step of the addi- 
tion algorithm needs to construct a number that  is the the 
sum of two abigits, and possibly a carry from the previous 
position; each abigit is strictly less than 2 N, so the max- 
imum value this sum may have is (2 ~v - 1) + (2 Iv - 1) + 1, 
or 2 * 2 ~ - 1, which is strictly lees than 2 N+I. Thus one 
more bit  of adder width is satisfactory. 

A primitive addition facility could be this 3-input, 
2-output function: 

(defun p r i m i t l v e - a b l g l t - a d d  ( c a r r y - l n  x y) 
; ;  Adds ' x '  t o  ' y ' ,  p l u s  t he  ' c a r r y - i n '  
; ;  Re turns  two v a l u e s :  t he  sum, aodu lo  t h e  
; ;  b i g i t  s i z e ,  and the  c a r r y - o u t  
( l e t  ( ( s u a  (+& c a r r y - i n  x y ) ) )  

( v a l u e s  ( l db  (by te  a b i g i t - e i z e  01 sua)  
(if (>=& sum ( exp t  2 abigit-size)) 

I 
o ) ) ) )  

Note that  all intermediate results are strictly less than 
2t+abilit'sise; thus the additive algorithms can be writ- 
ten in Lisp providing only that  fixnums are at  least 
abigit-size + 2 bits in width (remember: fixnums are 
twos's complement format, which still requires an extra 
bi t  for the sign). This means that  16-bit abigits would be 
workable for Lucid Common Lisp, or even up to 28-bit 
abigits; but  29-bit abigits would not work because fixnum 
overflow would produce a wrong value for the calculation 
of sum above, and the ' > - -  &'  test would give the wrong 
result. 

If this definition is taken for the lowest-level addition 
primitive (and if the target  machine can ignore overflows 
from its ALU), then it can be implemented in the code- 
generator as jus t  a couple of machine language instruc- 
tions, providing only that  

abigit-size < bits-per-word, 

On the MC68010, and machines like it, the code pat tern 
would simply be something like 

' ( ( add  , c a r r y  .x) 
(add ,x ,y)  

; ; Sum produced in  r e g l s t ~ r  ' y '  ; 
( c l r  , c a r r y )  

; ;  c a r r y - o u t  i n  r e g i s t e r  ' c a r r y '  
( b c l r  , (÷ a b l g l t - s l z e  o~set ) ,y)  

; ;  b ranch i f  no b i t  £n the  c a r r y - o u t  p o s i t :  
((b¢c he) , done-add ing)  
(move '1 . c a r r y )  

, done-add lng  . . .  
) 

where offset is an artifact of the pointer encoding scheme 
for fixnums. The code-generator interface for this kind of 
function specifies that  arguments 'x ' ,  'y', and 'carry '  must 
be located in da ta  registers, and it also specifies that  the 
two results are located respectively in the registers where 
'y '  and 'carry '  were received as input. For more details 
on the code generator features, see [Brooks 1986]. 

However this definition is a little too bare; further 
analysis will show that ,  for addition, the more useful 
'lower-level' operation is defined as 'Add the i ' th  bigit 
of the bignum x, plus the carry-in, into the j ' t h  bigit of 
blgnum y, and return the 'carry-out ' .  With  the latter 

definition, the Lisp-written additive algorithms will be 
dealing only with O's and l ' s  for the carry-out /carry-ln 
arguments, and various indices into the bignums. Thus 
the additive algorithm~ can be writ ten in such a way as to 
be unaffected by the bigit size. In a section below, we will 
exhibit a MC68000 version of this expanded definition, 
called ' p r l a l t i v e - a b i g l t  - r e f - a d d - l n t o - a b l g i t - r e f '  
to show tha t  it  isn ' t  any more difficult to put  this one 
into the code generator than it is to put  the simpler def- 
inition above in. 

Regardless of the primitive used, the 'Classical '  algo- 
r i thm calls for adding two abigits together and propogat- 
ing the carries; if one argument is shorter than the other, 
then a separate piece of code may continue the carry pro- 
pogation. An interesting problem for the two's comple- 
merit format is to know when overflow has occured. The 
steps of addition, for two's complement format,  are ex- 
actly the same regardless of whether one or both argu- 
ments are negative, but  the detection of overflow~when 
the result bignum has to be 1 bit  larger than the larger 
of the two arguments-- is  not as obvious as with signed- 
magnitude representations. A carry out of the high-order 
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bit  of the accumulation does not neeescarily imply over- 
flow; only if the carry out of tha t  bi t  position does not 
equal the carry in to it. See, for example, the expressions 
denoting how the MC68020 calculates separate Overflow 
and Carry bits for its two's complement addition, found 
on page A-3 of [Motorola 1985]; a '~ranilla ", Lisp-only 
version of the addit ion algorithm will emulate this 'hard-  
ware '  test  one way or another. 

In the description of the primitives for addition and 
subtraction,  'carry-in '  and 'carry-out '  as well as 'borrow'  
and 'borrow-back'  all refer to a 1-bit quan t i ty - -a  0 or a 1. 

2.4 Bigits [or Multiplication Algorithm 

The 'bigi t '  si tuation is not  quite so pleasant for the 
multiplication algorithm as it was for addition. When 
coded in Lisp, there are many lines of code that  ref- 
erence intermediate quantities as large as a full mbigit.  
Worse yet, when coded in Lisp, the lowest-level, 3-input- 
2-output multiplier shows that  the mbigit size must be 
less than half the maximum fixnum size. 
(defun p r i m i t i v e - m b i g i t - n u l t i p l y  ( c a r r y  x y) 

; ;  H u l t i p l i e a  ' x '  t i n e s  ' y ' .  adding  i n  
; ;  t h e  ' c a r r y ' ;  
; ;  Re turns  two v a l u e s :  t he  low h a l f  of  
; ;  t h e  r e s u l t ,  and the  h igh  h a l f .  
( l e t  ( ( p r o d u c t  (÷& c a r r y  (*k X y ) ) ) )  

( v a l u e s  ( Idb  ( b y t e  a b l g l t - s S z a  O) 
p roduc t )  

( l d b  (by te  a b l g l t - s l z e  a b l g l t - s l z e )  
p roduc t )  ) ) ) 

When 'x '  and 'y '  take on values of the largest bigit,  the 
intermediate product  will be twice as long, This implies 
that  the mbigit size must be less than half the fixnum 
size--30 bits in Lucid Common Lisp- -or  at  most 14 bits. 
Because 14 is an unwieldy access size, an mbigit size of 
8 bits was chosen, /or  the Li ,  p.only development (but see 
§2.2.3 for a discussion of 14-bit alternatives). 

If z and I /a re  integers, how big, then, can the prod- 
uct z * y be? Theorem 1 below gives the answer, which 
is of use when allocating memory space for the result of 
a bignum-by-bignum multiplication. We don ' t  want the 
multiplication routine to allocate extra  space needlessly, 
nor do we want it to be caught short  by one bit  at  the 
very end! 

DEFINITION: The integer-length o f  an integer z is the 
non-negative integer n such that  

2 n - I  <_z < 2 n i f z > 0  

--2 n - I  > X >_ --2 n if X < 0 

0 i f z = O  

This part icular  definition focuses on the notion tha t  in- 
spired the name, i.e., the length of the bit  field capable 
of holding the number in binary notation. Its format 
is part icularly useful in proving Theorem 1 below. (It 

should be trivial to prove this definition equivalent to the 
one found in [Steele 19841, which is based on a form like 
[log~ ...].) The following obzervation immediately fails 
out  from this definition. 

COROLLARY: The number o f  bits needed to rep- 
resent an integer x in two's complement format is 
integer-length(z) + 1. 

THEOREM I.  Let z and II be non-zero integers, with 
integer-lengths respectively o f  n and m; then either 

lnteger-length(z * y) -- n + m 

or 

integer-length(z * y) = n + m - 1 
except when both x and y are a negative power of  two, 
in which case 

integer-length(=,  I/) = n + m + 1 

First ,  assume tha t  both z and y are positive. By the 
definition of integer-length, we have 

2 ~ -~  < z < 2 ~ (1) 

2 " - 1  < U  < 2 m (2) 

and by multiplying these inequalities together, we obtain 
the following bounds on integer- length(z ,  y): 

2 "+m-2 < z * ~ < 2 "+m (3) 

Splitting this interval in half about  the point 2 n+m-I  , it  
is clear that  one and only one of the following holds true: 

2 " + m - 2  <_ z , p  < 2 " + ' - 1  ( 3 1 )  

2 " + m - I  < = * V  < 2 "+m (3T) 

Equation (3 ~) is equivalent to saying that  
integer-length(z * y) = n + m - 1, and equation (3 1") is 
equivalent to integer-length(z * y) -- n + m. 

Now, assume tha t  z is negative, but  y positive. Then 
we obtain (1-) by the definition of integer-length for neg- 
ative integers: 

--2 n - I  > z  > --2 n (1) 

2 " - 1  < v < 2 "  (2) 

Multiplying together the inequalities again, z * 11 will be 
bounded as follows: 

- -2  n + m - 2  > Z * y > - -2  n + m  (3--) 

and by the same reasoning as above that  led to the split  
of equation (3) into (3 ~) and (3 T), we have the result 
tha t  in teger- length(z ,  II) is either n + m, or n + m - 1, 
but  by reference to the definition for negative numbers. 

A completely parallel case holds when y is positive, 
but  x negative. 
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Now aasume that  both z and y are negative; then 
from the definition 

- 2  ~-1 > z  > - 2  ~ ( i )  

- -2m- t  > I/ ~-- - - 2 "  ~') 

and again, by multiplying inequalities, we have 

2 ~+"~-2 < z * ~ _< 2 "+m (3') 

which can be factored into the following two equations, 
one of which, equation (3), we've already covered: 

2n+nt-2 ~-- = * l / <  2n+m (3) 

z * 7 / =  2 n + "  ( 3 t )  

That  is, equation (3') implies that  one, and only 
one, of equations (3) and (3t) is true. Equation 
(3) covers the case when integer-length(z * y) is ei- 
ther m + n or m + n - 1. The only way that  
equation (3t) can be true is if z = - 2  n and y -- 
- 2  m, i.e., both z and I/ are a negative power of two. 

Q.E.D. 

In fact, a case to watch out for is when either z or y is 
a negative power of 2; whereas integer-length[2 '~] = n +  1, 
we have, oddly enough, integer-length[-2 ~] = n How- 
ever, integer-length[-2 n + k] = n + 1 for 0 < k < 2 n. 
Thus there are many places in the coding of these bignum 
algorithms that  special-case the computations when one 
or more of the arguments is a negative power of two-- in  
part icular when estimating the length required to hold an 
additive operation that  may cause some argument to be 
negated (i.e., converting - 2  Jv into 2 N increases it 's inte- 
ger length by one). Note also that  a minimal field width 
to hold a integer representation in two's complement for- 
mat  is exactly one greater than the integer-length of that  
integer. 

The primitive operation actually used in the multi- 
plication algorithm is the basic component of the "Clas- 
sical" multiplication method, and is a bit  more complex 
than the 3-input, 2-output multiplier shown above. 

(defun p r  Lmlt lve  - m b l g l t - m u l t  I p l y -  add 
( c a r r y  m u l t i p l i e r  a u l t l p l $ c a n d  addend) 

-'; Bas ic  4 -1npu t .  2 -ou tpu t  uns igned  
; ;  mul tLp lLer ,  wi th  a d d i t i v e  c a r r y  i n .  
; ;  Returns  two v a l u e s :  low h a l f  of  t he  
; ; p r o d u c t / s t m ,  and the  h l g h - h a l f  
( l e t  ( ( a c c t m u l a t l o n  

(+& c a r r y  
(*k n u l t L p l L e r  mul t lp lLcand)  
addend) ) ) 

( va lue s  
( logandk acctmula tLon mbLgLt-mask) 
(ashr& acc tmula tLon m b l g l t - s l z e ) ) ) )  

Note that  the carry mbigit may be any value between 0 
and 2 mbigit'*ise - 1 inclusive. The resultant combination, 

the product  and sum, is 

multiplier * multiplicand + carry + addend 

Let m = mbigit-size be the number of bite per mbigit; 
then the maximum value obtained by the combination 
above will be 

( 2 "  - x) , ( 2 "  - I)  + 2 ,  ( 2 "  - 1) 

--- 2 2 "  - 2 * 2 "  + 1 + 2 . 2  m - 2 

---- 22m - 1 

The result will thus be representable in two mbigite, and 
the two value~ returned will each be an mbigit; one will 
be stored as par t  of the part ial  product accumulation, 
and the other will be used as the carry to the next 
p r i n i t i v e - m b L g l t - n u l t L p l y - a d d  call. See the discus- 
sion of 'Algori thm M'  in [Knuth 1981]. 

There are separate functions for multiplying two 
bignums together, and for multiplying a fixnum by a 
bignum. In the lat ter  case, there are a number of oppor- 
tunities for optimization, primarily when the multiplier is 
merely one mbigit, and thus there need be no loop over- 
head to cycle through the mbigits of a bignum multiplier; 
also, the cases of multiplying by - I ,  0, or I will come to 
this function, and can be dispensed with quickly there. 
Additionally, the lowest-level step is actually producing 
the bigite of the product ,  rather than producing interme- 
diate bigite which would subsequently have to be added 
into the final product.  

If the abigit size is increased, one would expect a 
linear speed-up for the additive operations; but  many 
calls to the multiplication and division routines will ex- 
hibit  a quadratic speed-up. For suppuse z and y are 
bignums of about  n mbigite; then the "Classical" mul- 
tiplication algorithm takes n 2 primitive multiplications 
and 2n 2 primitive additions also (adding in the carry is 
counted separately from adding in the low-order part  of 
the result to the accumulating partial  product).  So when 
the mbigit size is doubled, the number of mbigits in each 
operand is decreased by a factor of 2, and the number of 
primitive multiplications subsequently required becomes 
( n / 2 )  2 = ( n 2 ) / 4 ,  f o r  a speed-up of a factor of 4. 

2.5 Bigit Size/or Division Algorithm 

The division algorithm is essentially 'Algori thm D' 
as found on page 257 of "The Art  of Computer Program- 
ming, Volume 2, Seminumerical AlgorithmA n by Knuth 
[Knuth 1981]; but  with minor variations. In particular,  
the normalization used is that  most obviously implied by 
Knuth 's  "Theorem B ~ on page 257--namely the divisor 
is shifted until the hi.order bi~it is greater than or equal 
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to 2dbilit'leneth/2; this is equivalent to saying that the 
leading divisor digit in decimal notation is 5 or greater. 
The dividend is moved into a resource-allocated tempo- 
rary bignum, and the bigits of both the quotient and re- 
mainder are produced 'in place'; of course, the dividend 
must be shifted by the same amount corresponding to the 
divisor normalization. 

2.6 Endion-ne6s: 

The primitive access to bignums is from the little- 
endian point of view; namely, increasing the "index of 
access" will increase the significance of the bit fields in- 
volved. Unfortunately, the MC68000 series of machines is 
fully big-endian--it is byte-addressable, and when bytes 
are packed into a half-word (into a 'word', in Motorola's 
terminology) they are packed with the higher byte ad- 
dress being the bits of lesser significance. Even the main 
addressing mode of the ADDX instruction, memory- 
to-memory with auto-decrement, is biased toward big- 
endian for full words (i.e., larger word address mean lesser 
bit significance). We prefer little-endian since that is the 
protocol parallel to vector accessing and to the arguments 
of the LDB function; also, it seems to be the protocol that 
more modern computers accept. Thus we have the incon- 
gruity between the machine's preference for word format, 
and that imposed by the little-endian approach. Since 
our approach is only visible when coding the lowest level 
access and update primitives, it is perfectly acceptable to 
pack and de-pack according to any pattern of scrambling 

The table labelled "Memory-access Modifications for 
Big-Endian Host" indicates how the memory access must 
be modified to maintain the illusion of little-endian in 
a big-endian host such as the MC68000. The leftmost 
column of the table indicates how one may chose to pack 
the bits of a bignum into the computer's memory (i.e., 
how bytes and half-words are combined into full word 
chunks); the phrase "Sbit/16bit* where 8bit and 16bit are 
each either "Big" or "Little", indicates that the "8bff' 
endian mode is used for packing bytes into a half-word, 
and that the "16bit" endian mode is used for packing half- 
words into full words. The remaining columns of each line 
list the modifications necessary to the primitive accessors 
for that particular layout. Two modifications potentially 
exist for each accessor: one to modify the index of access, 
and the other to permute the bits of the unit accessed. A 
form like "#bxxxx" means "change the low-order bits of 
the index by xor'ing them with the bit pattern 'xxxx'"; 
the phrase "SwapB" means to swap the bytes in each 
half-word of data; the phrase "SwapW' means to swap 
half-words within a full (32-bit) word of data; and finally 
"~-*" means "do nothing". 

Since Big/Big is the preferred ordering of the 
MC68000, then only the choice of Big/Big packing will 
permit straightforward 32-bit access. For a little-endian 
machine such as the VAX, the entire last line of the table 
would be "do nothing" entries (and there would be no 
other "do nothing" entries). 

MEMORY-ACCESS MODIFICATIONS FOR BIG-ENDIAN HOST 

Packing 
Big/Big 
Big/Little 
Little/Big 
Little/Little 

8-Bit Access 

#b l l  
#b01 

16-bit Access 32-bit Access 

#bl0 ~-~ 

#bl0 #bl0,SwapB 
SwapH 
SwapB 

SwapB SwapH,SwapB 

a word of bits into a machine full word [but, we cannot, 
at this level compensate for the ordering of full words]. 
So we are concerned with (I) which format the machine 
uses--his- or little-endian, (2) which way we want bytes 
to pack into a half-word, and (3) which way we want 
half-words to pack into full words. One reason why (2) 
may not be the same as (3) is that the relative cost of 
compensating for one may be much worse than compen- 
sating for the other; for example, on the MC68000 series, 
(3) may be compensated by a SWAP instruction, which 
is among the fastest, whereas (2) would, in a 'worse' case, 
be compenstated by two SWAPs and two ROLWs, with 
the ROLWs being relatively expensive. 

It would appear that one should choose a represen- 
tation that permits the most common access to be done 
with no ~pat~h ups". For example, if 16-bit access is 
to be favored, then choosing big-endian for bytes within 
the half-word, but little-endian for halfwords within the 
(Ions) word is the best choice; indeed, the "vanilla" Lisp- 
coded additive algorithms would wind up stressing the 
16-bit access. However, it is most likely that at some 
point in development, a porter will want to have at least 
some of the additive primops "in machine language" (in 
the code generator), and thus the porter should bias his 
choice towards the eventual preference of 32-bit access; 
that is, he would favor the case that could possibly lead 
to the most efficient machine language instructions being 
used in the inner loop. 
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3. N e w  A r i t h m e t i c  P r imi t ives  

Lucid's biguum functions are written under the as- 
sumption that about two dozen or so primitive functions 
exist. Not all of these are truly primitive, in that they 
are simply macros (or compile-time macros--a  Lucid ex- 
tension) which expand into simple lisp code using the 
' true'  primitives. In the interest of conservation of printed 
space, only the ' true'  primitives will be listed and ex- 
plained here; these are the ones that have been put into 
the code generators of one or more of the compiler's tar- 
get machines, or for which there might be some additional 
speed-up to be taken if they were so implemented. 

For example, a b i g i t - c a r r y - p r o p o g a t e - t h r u - b n  is 
a function which propogates an additive carry one abigit 
at a time; it uses one of the lower-level primitives listed 
below, and is merely a short, Lisp-coded loop. It is very 
unlikely that putting it into machine language will speed 
up any interesting benchmark, because even if its time 
were to go down to zero seconds per loop iteration, it 
just doesn't do that many iterations. Carries don' t  pro- 
pogate far, on the average. Thus our main concern is that 
the short, simple p r l a l t l v e - a d d - l n t o - a b i g i t - r a f  be 
as ei~cient as possible. 

(defun ablgSt  - c a r ry -p ropoga t  e - t h ru -bn  
(bn a s t a r t l  sendS) 

( loop 
(when (=& a s t a r t l  aendl)  ( r e t u rn  1;)) 
(unless  ( t n c r e m e n t - a b i g i t - r e f  1 

(ABIGIT-REF bn astart$)) 
(return nil)) ; 'carry' stops here: 

(incfk astartl))) 

where I n c r e m e n t - a b l g l t - r e f  is a macro: 
(defmacro t n c r e m e n t - a b i g t t - r e f  

(amount ( iguore  blgnum index))  
' ( p r i m i t i v e - a d d - i n t o - a b i g i t  - r e f  

• amount .btgnua . index))  

However, a b S g t t - c a r r y - p r o p o g a t e - t h r u - b n  is com- 
piled 'in-line' in the few places where it is called. A com- 
plete definition of 'primitive-add-into-abigit-ref' follows 
below. 

The "new primitive" function names are listed imme- 
diately below, and following that is an interface descrip- 
tion of their functional behaviour. The subcategories of 
division are labelled with the names of the steps in 'Al- 
gorithm D'  ([Knuth 1981], page 257) wherein they are 
used. 

3.1 New Primitive Names 

Addition/Subtraction into Abigits 
primitivv-add-into- abigit-ref 
primitive-sub-fromoutof-abigit-ref 
primitive- abigit-ref-add-into-abigit-ref 
primitive-abigit-ref-sub-fromoutof-abigit-ref 

Basic Multiplication Step 
primitive-mbigit-multiply-add 

Division: 
D3: primitive-dbigit-divide 
D3: dbigit-trial-quotient-toobigp 
D4: primitive-dbigit-multiply-eub 
D6: primitive-add-into-dbigit-ref 

Word-at-a-time Copying 
bignum-word-replace 
bignum-wor d-negate-into-biguum 
bignum-word-zero 

Word-at-a-time Comparisons 
bignum-word-comparison 

3.2 Inter/ace Specifications 

3.2.1 Addition~Subtraction into Abigits 

fn: p r imi t ive -add- in to -ab ig i t - r e f  
args: ~rry- in  z bn i 
fn: p r imi t i ve -zub - f romou to f - ab ig i t - r e f  
args: borrow.in z bn i 

Adds (or subtracts) a fixnum into the i ' th  abigit of 
bignum bn, modifying it in place. In the addition case, 
the fixnum added is z + carry.in; in the subtraction 
case, the fixnum subtracted is z + borrow-in. In both 
cases, the carrys and borrows are either 0 or 1. 

Returns the generated carry-out (or borrow-back) as a 
fixnum 0 or 1. 

fn: p r iml t ive -ab ig l t - r e f -add- in to -ab lg i t - r e f  
• rss: carry.in src i dst j 
fn: p r iml t ive -ab ig i t - r e f - zub- f romou to f -ab ig i t - r e f  
ergs: borrow-in ~rc i dst j 

Adds (or subtracts) the i ' th abigit d bignum arc, into 
the j ' t h  abigit of biguum dst, modifying &t in place. 
The carry.in (or borrow-in) is treated exactly as in the 
function 'primitive-add-into-abigit-ref' (or 'primitive- 
sub-fromoutof-abigit-ref') described above. 

Returns the generated carry-out (or borrow-back) as a 
fixnum 0 or I. 

3.2.2 Basic Multiplication Step 

fn: p r im i t i ve -mb ig i t -mu l t i p ly - add  
args: carry-in multiplier multiplicand addend 

Computes addend + multiplier • multiplicand + carry-in, 
where all arguments are mbigits. 

Returns two values, the low-half of the result and the 
high-half, as mbigits. 
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3.2.3 Division 

fn: pr im| t iv~-  db ig i t -d iv ide  
args: divisor di~n'dend-low-hulf dividend-high.half 

The three arguments are dbigits, divisor is divided into 
dividend.low-hull ] dieidend.hifh.hal/. 

Returns two results, the quotient and the remainder of 
that  division, as dbigits. [Remember that ~1 ~ here 
means ~juxtaposition ~ ] 

fn: db ig i t - t r i a l -quo t i en t - t oob igp  
args: Vhi-1 ~ Uj-1 r 

Arguments are the intermediate quantities of 'Algorithm 
D', step D3, of [Knuth 1981], where an estimation of 
the next quotient digit, ~, is being made. 

Returns non-NIL iff Vhi-I • ~ > r [ U j - I .  [Remember 
that  ~[" here means ~juxtaposition "] 

This test will be true for all cases where the trial quotient 
digit, ~, is 2 too large, and will be true for almost all 
cases where ~ is 1 too large. The division algorithm 
simply decrements ~ until this test is passed; then, on 
the average, two out of 2 dz~ 'mt  triak will pass with 
still too large by 1, and step D6 of 'Algorithm D'  will 
be necessary. 

fn: p r imt t lve -db ig l t -mu l t i p ly - sub  
arp: borrow-in multiplier multiplicand minuend 

Used at step D4 of 'Algorithm D'  of [Knuth 1981]. 
This function is almost exactly like primitive-mbigit- 
multiply-add except that (1) the two additive opera- 
tions are subtractions instead of additions, and (2) the 
arguments are dbigit-sized instead of mbigit-sized [but 
probably dbigit-size is the same as mbigit-sise anyway]. 
Computes a result 

minuend - multiplier * multiplicand - borrow.in. 

Returns two values, the low-order dbigit of the result in 
two's complement form, and the borrow-back gener- 
ated, which is non-zero only when the result is nega- 
tive. 

Let the two's complement form of the result be z [ y. The 
first return value is just y, which can be computed as 

( ldb (byte  db lgJ . t - s ize  O) r e s u l t )  

but in the case when z is non-zero (i.e., when 
the result is negative), the generated borrow-back is 
2 dbigit'sise - z, which can be computed as 

( ldb (byte  d b i g i t - s i z e  O) 
(-  ( ldb (byte  d b i g i t - s i z e  d b i g i t - s i z e )  

r e s u l t )  ) ) 

I 

fn: p r imi t lve -add - in to -db ig l t - r e f  
args: carry-in z bn i 

Used at step De of 'Algorithm D'  of [Knuth 1981]. This 
function is exactly the same as 'primitive-add-into- 
abigit-ref', except that  dbigits are used rather than 
abigits. Note, that  even when the dbigit size is ex- 
tended (to 16, from 8), a single dbigit itself wil| tlt 
within a fixnum, and this operation only needs 1 bit 
more than a dbigit-size for intermediate calculations. 

Returns the generated carry-out as a flxnum 0 or 1. 

8.2.4 Word-at.a.time Copyino 

fn: b i g n u m - w o r d - r e p l a e e  
args: dst are dst-starti dst.endi src.utarti src-cndi 

This primitive is used in numerous functions, and is some- 
what akin to the r ep lace  function of Common Lisp 
([Steele 1984], page 252). The words of bignum dst are 
replaced with those of bignum ere, beginning at word 
index &t-starti  of &t and word index src-starti of ere; 
words are 'replaced' up to, but not including, the end 
indices. If the subsequence intervals specified are not 
of the same length, then the length of the shorter of the 
two is taken; if either end index argument is nil, then it 
is defaulted to the bignum-length of the corresponding 
bignum. 

Returns &t.  

fn: b i g n u m - w o r d - n e g a t  e-int o - b t g n u m  
args: borrow dst are det.indez sre-lndez count 

Used in unary minus on bignums, and when converting 
negative arguments to positive format for multiplica- 
tion or division, borrow must be 0 or 1; if it is O, then 
the words of bignum &t are replaced with those of the 
negation of bignum erc, beginning at word index &t- 
indez of dst and word index src-indez of arc, for a total 
of of count words; if borrow is 1, then dst is replaced 
with the complement of arc rather than the negation. 
This definition suggests an implementation strategy 
whereby words are succesively subtracted from 0, with 
a borrow being propogated. 

Returns the final borrow-back. If the argument borrow is 
0, then there will be a final borrow at the end if and 
only if the bignum segment of are is all zeros. 

The algorithms for multiplication and division are actu- 
ally carried out in signed-magnitude form. Thus nega- 
tive arguments to these algorithms must first be copied 
and negated (into a temporarily-allocated bignum of 
sufficient size); the result, if negative, must also be 
negated (in place) before returning it. The author has 
investigated multiplication algorithms which will work 
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with the two's complement bigits, just as the additive 
algorithms will so work; but it appears as though the 
implicit carry-propogations in these algorithms will, on 
the average, be more costly than a quick copy-and- 
negate. No such effort has been expended to try to find 
a division algorithm that will work on complemented 
bigits; likely there is very little to be gained, since the 
copy/negate time is so small in comparison to the total 
divison time. 

Negative powers of two, in two's complement form, have 
all their non-sign bits zero; the only case, then, when 
'bignum-word-negate-into-bignum' ought to return a 
non-zero carry is when the number being negated is 
a negative power of 2 ~ r d ' ~ .  This is the case where 
2 N actually needs one more word to be represented 
than does - 2  N (memory allocation is rounded up to 
words). 

fn: b ignum-word-zero 
ergs: bn nwor& 

Used in ASH on bignums. Zeros out the words of bignum 
bn, from word indices 0 through nwords - 1. 

Returns bn. 
A function bignum-replace supports the Common Lisp 

function ASH for bignums, as well as some inter- 
nan data movement. Whereas 'bignum-word-replace' 
described above is 'replace' on word boundaries, 
bignum-replace is 'replace' on bit boundaries. 

3.2.5 Word-at-a-time Comparisons 

fn: b lgnum-word-compar lson 
srgs: bnl bn~ wlength 

Used in function 'bignum-bignum-compare', which sup- 
ports equality and inequality comparisons. 

Compares the two bignums bnl and bnt~, from the word 
at index wlength-  1 down to word 0, and returns 

(i) returns 0 if ~rgs are equal; 
(ii) returns +1 if bnI > bnt~; 
(iii) returns - 1  if bnl > bne; 

3.3 Addition, Multiplication: Easy Examples 

The inner part of the addition and subtraction loop 
looks something like the code which follows. The smaller 
of two addends is called 'addend' and is being added into 
the other one, called 'sum'. [The coding has been changed 
slightly to facilitate presentation; among other things, 
we have abbreviated 'primitive-abigit-ref-sul>-fromoutof- 
abigit-ref' by 'parsfar']. 

( l e t  ( (carry  0)) 
(dotimes (i  (ab tg i t - l ength  addend)) 
(setq carry  (parsfar  carry addend i sum l ) ) )  

carry) 

After this loop has finished, if car ry  is non-zero and if the 
length of sum is greater than that of addend, then a carry- 
propogation step will take place. [Note: ab ig i t - l eng th  
is the number of abigits in the bignum]. See the intro- 
duction to §3.0, where a sample definition of 'abigit-carry- 
propogate-thru-bn' is presented. 

Virtually all the speed-up on the factorial benchmark 
is due to increasing the mbigit size from 8 to 16. In order 
to deal with the intermediate 32-bit result, 'primitive- 
mbigit-muitiply-add' must be coded in machine language; 
see §2.4 for a Lisp-written version of the primitive. Here 
is the version for the MC65000 series, when the abigit 
size is 16: 

(defprlmop primlt~tve-mblglt-multlply-add 4 2 
;; Basic 4-1nput, 2-output unsigned 
;; mul t ip l i e r ,  with addi t ive ca r ry - ln  
;; Returns two values:  the low half  of 
;; the product/sum, and the hlgh-half  
: a r t s  ( (¢a r ry - ln  dreg) ;Ll l  arguments 

(mul t ip l ier  dreg) ; are passed in 
(multiplicand dreg) ; thru data 
(addend dreg)) ; r eg i s t e r s  

: e l l s  n i l  
: r e s u l t - l o c  '(VALUES ,mul t ip l ie r  .addend) 
:coda ' ( ( f i xnua - to - l ach ine  .mul t ip l ier )  

;; LAP macro: typ$¢al ly  1 rea l  i n s t .  
(fixnum-to-machine ,multiplicand) 
(mulu ,mul t ip l ie r  ,multiplicand) 
(add . ca r ry - in  ,accumulation) 
(fixnum-to-machine .accumulation) 

;; add in the product to the 
;; accumulation 

(add .multiplicand ,accumulation) 
( c l r  ,mul t ip l ier)  

: ;  a t r i p  out the low-half of the 
; :  accumulated product 

(~ovew ,accumulation ,mul t ip l ier )  
(machine-to-fixnum .mul t ip l ier )  

;; s t r i p  out the high-half  too 
( ( c l r  w) .a¢cuaulatlon) 
(swap ,accumulation) 
(machine-to-fixnum ,accumulation))) 

8.4 Divleion is Even E~ier  

The paradigm above for 'primitive-mbigit-multiply- 
add' is, in fact, exactly the same required for 'primitive- 
dbigit-multiply-sub', which is the important part of the 
"Classical ~ division algorithm---step D4 on page 258 of 
[Knuth 1982]. A little analysis reveals that when divid- 
ing a 2n-dbigit number by an n-dbigit number, there will 
be about n invocations of 'primitive-dbigit-divide'--the 
various estimations of the trial quotient bigits, which are 
almost always right (according to a variation of Theorem 
B on page 257 of [Knuth 1981]). But that division will 
also require on the order of n 2 invocations of 'primitive- 
dbigit-multiply-sub'. Thus the "Classical ~ bignum divi- 
sion algorithm actually trades primitive division steps for 
primitive multiplication and addition steps. 
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Let us trace the calculations of 'primitive-dbigit- 
multiply-sub' when bits-per-dbigit = 4 and the argu- 
ments are 3, 2, 5, and 15. 

(pr4mlt lva-dblgl t -mul t lp ly-sub 3 2 8 #xF) 
-> ( -  ( -  #rY (*  2 S)) S) 
m> 2 

and thus the low-order dbigit is 2, and the generated 
borrow-back is 0. But in this example 

( p r ~ I t i v e - d b l g l t - m u l t l p l y - s u b  6 8 7 9) 
=> ( -  ( -  9 (*  8 7 ) )  6)  
=> -53 = #x-38 

the result is negative. Now since 
#x-36 = -(16,16) + #xCB, then #x~B is the 2's comple- 
ment format of #x-36, expressed as two hex digits. Since 

\#X35 = -1"(16"16) + \#xC*(16) ÷ \#:xB(1) 

thus the low-order dbigit is 11 (or #xB), and the generated 
borrow-back is 24 - #xC = 16 - 12 = 4. 

The primitive 'dblgit-trial-quotient-toobigp' is the 
code about which Knuth says on page 258 of [Knuth 1981] 
"The ... test determines at high speed most of the cases 
in which the trial ~ is one too large, and it eliminates 
a/l cases where 0 is two too large." This primitive would 
be called n times in the example of the previous par~- 
graph, so its time performance may not be critical; but 
both it and primitive-dbigit-divide would have to go into 
machine language when the dbigit size is about half the 
fixnum size or greater. 

4. Compara t ive  Performances  

A number of timing comparisons are exhibited be- 
low, to demonstrate two things: (1) that placing the seven 
prototype new primitive operations in the compiler's code 
generator will yield speed-ups of factors from three to 
seven on some common bignum benchmarks compared 
to using the purely Lisp-written implementation, and (2) 
that this minimally-extended Lisp implementation will 
perform within s factor of three to s factor of seven of 
the "best po~ible ~ machine language implementations 
[i.e., will not be one or two orders of magnitude slower]. 

4.1 8#me Tl~'cal Bignum Benchmarks 

The factorial function is one of the easiest Lisp pro- 
grams to remember; inevitably, someone who walks up to 
a Lisp system will type it in and time it. We use 

(defun f a c t  (n) 
( i f  (< n 2) 1 (* n ( fac t  ( I -  n ) ) ) ) )  

am the definition of factorial, and time it at n = I000, not 
because this is a particul~'ly revealing benchmark, but 
becau~se it may be very common--people will frequently 
type it in by hand since it is so easy to do. Then we list 

four more "micro-benchmarks* which test, respectively 
(2) bignum-by-bignum division, (3) bignum printout in 
base I0, (4) bignum-by-bignum addition, and (4) multi- 
plication of a small fixnum by & "small" bignum [to aster- 
taln whether the achievement of speed in the asymptotic 
limit case has degraded performance on the smaller, com- 
mon cases]. 

flO00 ffi 
fl%f9 = 

Pfl000 = 
+riO00 = 
20f19 = 

( fac t  1000) 
( t runcate f l000 f000), 

where f�00 = ( fac t  900) 
(pr in t  f I000) 
(dotlnee ( t  1000) (+ f lO00 f lO00) )  
(dotlaes ( t  10000) (* 20 f 19 ) ) ,  

where f19 = ( f ac t  19) 

Note that one often must use some asleight of hand" 
to prevent a compiler from optimizing aw~y the entire 
DOT1MF.S expressions in the latter two lines. 

Another prominent bignum-oriented benchmark is 
FRPOLY ([Gabriel 1985], section 3.20) when run on the 
r2 polynomial. We timed the 5'th degree case, the lO'th 
degree case, and 15'th degree case, and we present the 
results respectively as FR2-5, FR2-10, and FR2-15. The 
5'th degree case does not use much bignum arithmetic-- 
161 additions and 260 multiplications of numbers smaller 
than 2siS--these runs were done primarily for compar- 
isons, to see how the amount of bignum arithmetic in 
this benchmark is increased as the degree of the poly- 
nomial increases. FRi-10 does 2424 additions of posi- 
tire bignums in the range [ilas, 3ass), sad 74 smaller ad- 
ditions; it do~ 2093 bignum-by-bignum multiplications 
with arguments about equally distributed over the inter- 
val [isa,22se). The actual distribution over that interval 
is probably more like some bell shaped exponential, but 
the variation between high and low points doesn't appear 
to be more than about 50%. 

FR2-15 is more bignum-intensive. It spends almost 
all its time in the bignum routines for addition and mul- 
tiplication, with the time spent in multiplication being 
about three times greater than that spent in addition 
[were our multiplication algorithm a faster operation, i.e., 
closer to the ideal machint--luguage implementation, this 
ratio might be closer to two times greater instead]. 

Here is a histogram of argument sizes for those opera- 
tions: 

Argument Size 

[2",2 s4) 
Additions 

56 

Multiplications 

76 

[2e~,2sis) 1200 040 

[21is , 2246 ) 2666 22050 

[22se , 2 s1~) 37422 19800 

Totals 41434 43766 
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Note: every call supplies two arguments; also, the 
summations for + are not exactly the same as twice the 
number of calls because there were two arguments in the 
interval [2 s°, 2s2), which is not shown. 

4.2 Timings of Lucid Common Lisp 

The timings of Lucid Common Lisp implementations 
were run on a Sun-2/160 workstation, a Sun-3/160 work- 
station, and on a workstation built on a RISO-type ma- 
chine. The results axe listed in Table I. To see the effect 
of the endian-ness of representation, compare the sev- 
eral trial* run in a little-endian format implementation 
with the l,~ter big-endian format for the RIsc-type ma- 
chine, wheee natural format is big-endian. In Table I,the 
column headed "lmpP identifies the implementation by 
its machine name and by the configuration of endian- 
hess used in the implementation (see §2.6). The column 
headed Bigit Sizes identifies the sizes of the three major 
bigit c,~tegories--an n-tuple (¢t, m, d) mea~.s an abigit size 
of 'a ' ,  an mbigit size of 'm ' ,  and a dbigit size of 'd ' .  A 
double-dagger after the ntuple, like (a, m, d)$, mesas that  
the eIal~-W01~-itEPLtC~ primitives were also coded in 
machine language. 

Here is a summa~j' of the meanings for the lmpl column 
of Table I, and of Table H: 

lmpl Workstation 8bit/16bit 
Entry Name Machine Endian-ness 

68010L Sun-2/MC68010 Little/Little 
68010B Sun-2/MC68010 Big/Big 
68020L Sun-3/MC68020 Little/Little 
68020B Sun-3/MC68020 Big/Big 
RiscL RL~O-type Little/Little 

RiscB RlSC,-type Big/Big 
uVAX-H MicroVAX/H Little/Little 

The RISC.type machine does memory fetch/store 
operations in big-endian format, just like the MC68000 
series; the VAX does memory operations in little-endian 
format. Thus the preferred format for the MC68000 and 
the Rlso-type machines.is Big/Big; that for the VAX is 

Little/Little. To see the separate effects of a mismatch 
between the machine's preferred format and the imple- 
mentation format, a couple of runs have been made with 
only this factor varying; in addition, in order to see the in- 
cremental effects of increasing the mbigit size, the dbigit 
size, and the abigit size, there are a series of runs made 
with just these variations. 

As of the writing of this paper, Lucid does not have 
a complete implementation for the VAX; thus we have 
timed the various benchmarks on the %anilla" imple- 
mentation, which required only the 8-bit and 16-bit fetch- 
and-store operations to be implemented (the rest being 
in Lisp). Since there is a rather regular speed-up ob- 
served on the other implementations when going from 
the %~nilla" implementation to an "extended bigit" im- 
plementation, we have projected po~iblc timings for an 
"extended bigit" VAX implementation of Lucid Common 
Lisp in the uVAX-H row with an asterisk. 

The timings are measured over numerous runs, and 
a reproducible minimum time is taken. Generally this 
meant that  any run with significant disk-swapping time 
had to be discarded (but see exception below for the TI  
Explorer). All of these implementations were done under 
some form of Unix; therefore, the coarse granularity of 
the Unix runtime metering must be considered. But still, 
after discounting disk loading, meet of these runs would 
not vary more than about 2% or 3% greater than the 
times shown. 

T A B L E  I:  T imings  o f  Luc id  C o m m o n  Lisp I m p l e m e n t a t i o n s  

All times are in seconds. Bigit Sizes: (abigit, mbigit,dbigit) 

Impl Bigit Sizes fl000 fl%f9 Pfl000 +fl000 20f19 FR2-5 F R 2 - 1 0  FR2-15 
68010L (16, 8, 8) 80. 9.78 65.6 53.1 13.4 1.18 26.3 460 
68010B (32,16,16)t 17.12 2.20 11.52 11.8 10.0 .776 12.32 143.4 
68020L (16, 8, 8) 20.8 2.48 20.9 14.1 4.44 .386 7.64 125.6 
68020B (32,16,16)'[" 4.60 .586 3.0 4.40 3.60 .280 4.14 45.2 
RiscL (16, 8, 8) 59.2 7.5 46.8 20.7 8.6 .70 17.3 320 
RIScB (32,16,16)t 10.5 1.30 7.20 5.1 5.1 .40 6.4 77.9 
uVAX-H* (16, 8, 8) 56.5 7.06 35.2 28.1 10.44 
uVAX-H* (32,16,16) t 12.5 1.6 6.2 7. 7.8 

fl000 computes 1000! fl%f9 truncates I000! by 900! 
Pfl000 prints 1000! +fl000 adds 1000: to itself 1000 times 
20f19 multiplies 20 times 19! 10000 times FR2 is the Bignum-oriented FRPOLY Benchmark 
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4.2.1 Comparison Ior Specific E~'e¢~ 

By comparing Nveral stages of implementation on 
the RlSO-type machine, we can note the incremental ef- 
fect of, say, increasing the dbigit size and bringing the sev- 
eral division-related pr'nnitive operations into the code- 
generator. 

These rune were compiled with an earlier version of 
Lucid's compiler, which produced slightly leas efficient 
code than that  used for the rune in Table I above; con- 
eequently, they will not be directly comparable. Further- 
more, only a couple of runs were made on each bench- 
mark, so the variance of times will be higher (e.g., the 
difference between 11.2 and 11.4 is not significant, and 
may not even be reproducible). 

All times are in seconds. 

Biglt Sizes: ( abioit, mbigit, &igit 

Impl 

RiscL 

Bigit Sizes 

(i6, 8, 8) 
RiscB (16, 8, 8) 

RiscB (16,16, 8} 

RiscB (16,16,16) 

RiscB (32,16,16) 

RiscB (32,16,16)~ 

TABLE IIA 

fl000 

59.1 

Pfl000 
47.1 

62.1 50.2 

12.4 46.4 

11.2 8.5 

11.4 7.4 

11.3 7.3 

The foltowing effects are noticeable: 

o the time to adjust for endian mismatch in accessing 
causes a 5~  to 7% slowdown, as seen by comparing 
RiscL(16, 8, 8) with RIZcB(16, 8, 8); 

o when the mbigit size is doubled (from 8 to 16), the 
speed of computing large factorials is increased by a 
factor of 5. In general, bignum-by-bignum multiplica- 
tion would show a quadratic speed-up---doubling the 
mbigit size would quadruple the speed--and that ef- 
fect is visible in fl000 because in all multiplications 
after the 255'th the multiplier is a double digit bignum 
rather than a fixnum (because a mbigit size of 8 im- 
plies that 255 is the largest fixnum representable in 1 
mbigit); 

o when the dbigit size is doubled (from 8 to 16), the 
binary-to-decimal conversion is speeded up by a factor 
of 5 1/2; the conversion algorithm is not just repeated 
divisions by 10, but is also subject to the quadratic 
speed-up mentioned for multiplication. 

Results from FRPOLY show 
o when the ~fast copy ~ routine BIGNUM-MOPd)-P~PLACE 

is put into machine language, a realistic benchmark--  
FRPOLY--is  speeded up by over 4%. Before dismiss- 
ing this factor of 1.04 as being of little or no value, 

one should try to recall how often a couple of straight- 
forward lines of code have yielded a 5% speed-up on 
a non-trivial benchmark. As the saying goes, "nickles 
and dimes eventually mount up into dollars, n i 

All times are in seconds. 

Bigit Sizes: (abigit, mbigit, dbigit} 

Impl 

RiscL 

RiscB 

RiscB 

Bigit Sizes FR2-10 

(16, 8, 8) 18.1 
(32,16,16} 7.3 

(32,16,16)~ 7.1 

TABLE liB 

FR2-i5 

334.3 

87.4 

83.8 

Table II does not contain sufficient information 
to gauge the effect of doubling the abigit size; but 
Table I is revealing on this matter, when comparing 
the +f1000 times on the two runs RiscL(16, 8, 8) and 
RiscB(32,16,16)~. 

o when the abigit size is doubled, the additive algo- 
rithm is immediately speeded-up by a factor of two; in 
addition, another factor of two appears to come from 
the fact that  the code-generator template for the new 
primitive operation is "hand tailored ~ and probably 
better than the Lisp compiler could do by itself. Net 
result: a quadrupling in speed. [However, the ratio 
for the Sun-3/160, a MC68020 processor, was more 
like a factor of three than a factor of four speed-up; 
this effect has not been satisfactorily explained yet.] 

4.8 Some Other Common Lisp lmplsmentations 

The same micro-benchmarks were run on several 
other Common Lisp vendors' implementations, u well as 
a couple of predecessors to Common Lisp; these results 
are presented in Table HI. PSL, Franz, and NIL, in the 
latter part  of Table HI are not Common Lisps, but  are in 
the same family of MacLisp descendents that  led to Com- 
s o n  Lisp; timings from [Gabriel 1985] for the FRPOLY 
benchmarks are included for comparison. 

The timings for PrmssLisp are the cases designated in 
[Gabriel 1985] as "TrlOn & LclfNo'--tall-recursion slim- 
ination permitted, but  conversion to "local ~ functions 
calls not permitted. This is the configuration which moat 
accurately matches the Common Lisps which were timed. 
PSL was just barely implemented on the MC68000 archi- 
tecture when Gabriel's tlm|ngs were compiled, and it may 
not have been able to run FR2-15 then; NIL's bignunm 
were put more into machine language sometime after the 
Gabriel numbers were taken. 

i A cautionary word to the wiN: it says "nick~ and dimes', 
not "ponni~'. Before dickerin I around with epoed-ul~ below the 
1% level, one would do well to reflect upon M~inter'e Dictum: 
"Premature optimisation is The Source of all bugs.'--an aphorism 
variously attributed to Larry Muintor of Xerox Pslo Alto Rmearch 
Center. 
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T A B L E  I l l :  T imings  of  O the r  Lisp I m p l e m e n t a t i o n s  

All times are in seconds. Numbers marked by asterisk are from [Gabriel 1985] 

Lisp/Machine fl000 f1%t9 
Symbolics 3600 3.0 .29 
Symbolics 3600t 2.78 .276 
Symbolics 3645~ 1.80 .184 
TI-Explorer .91 .124 
FranzCL/68010 4.08 .500 
FranzCL/68020 1.22 .150 
VaxLisp 'uVAX-II- 2.57 7.9 
VaxLisp VAX-750 
NIL/750 
PSL/VAX-750 
Franz/750 
Franz/68010 
PSL/68010 

P f1000 +fl000 
3.16 5.2 
3.03 3.88 
2.50 2.6 
1.94 4.23 

15.1 3.23 
3.57 .933 

12.8 3.7 

20f19 FR2-5 
4.1  .21 
3 . 9 4  ' .196 
2.90 .147 
1.11 . 1 3 4  

6.55 .5 
1.30 .183 
3.5 

.60* 
2.15" 
1.58" 
1.18" 

.85" 
2.04* 

FR2-10 FR2-15 
'3.0 27. 
2.93 21.8 
2.45 15.0 
2.2 17.8 
5.8 53. 
2.1 16.9 

41.3 
7.25* 57' 

38.7* 479 
27.7* 394 

8.87* 155 
16.53 188 
37.6* {fail?) 

fl000 computes 1000! 
Pfl000 prints 1000! 
20f19 multiplies 20 times 19! 10000 times 

fl%f9 truncates 1000! by 900! 
+fl000 adds 1000! to itself 1000 times 
FR2 is the Bignum-oriented FRPOLY Benchmark 

Designation 
VaxLISp/uVAX-H 
VaxLISp/VAX-T50 
FranzCL/68010 
FranzCL/68020 

Machine 
MicroVAX/II 
VAX-U/750 
MC68010 (Sun2) 
MC88020 

Implementor(s) and Trade name 
Digital Equipment Corp., "VAX I~ISP" 
Digital Equipment Corp., aVAX LISP" 
Franz, Inc., ~Franz Common L i s f  
Franz, INC., ~Fran~ Common Lisp ~ 

Symbolics 3600 Symbolics 3600 Symbolics, Inc., "Symbolics Common Lisp z 
Symbolics 3645 Symbolics 3645 Symbolics, Inc., USymbolics Common Lisp z 
TI-Explorer TI-Explorer M.I.T. and Texas Instruments 

VAX-11/750 
VAX-11/750 
MC08010 
MC68010 (Sun2) 
VAX-11/750 

PSL/VAX-750 
Frauz/750 
F,~,/68OlO 
PSL/68010 
NIL/750 

Franz, Inc., ~FranzLisp w 
Franz, Inc., UFransLisp~ 
Univ. of Utah, "Portahle Standard Lisp ~ 
M.I.T. (aNIL~: New Implementation of Lisp) 

4.3.1 Benehmarldng Technique Tidbits 

The timings on the Symbolics 3600 series appear to 
be subject to much more variation than those of the Unix- 
based machines above--timings exceeding more than 50% 
of those reported above were quite common. In order to 
get reproducible results, the trials had to be run under- 
neath a WITHOUT-INTHRRUPTH form. During normal us- 
age, shutting off interrupts would be an untenable situa- 
tion; but in this study, the focus is on bignum implemen- 
tation strategies and not on overall machine performance, 
so its use may be excused. A dagger (t) by the machine 
name are for those runs in which interrupts were turned 
off; the other trials were taken normally. 

The particular Symbolics 3645 machine used had a 
faster disk than the other 3600 type machines, and it also 
had an IFU where the other did not. 

The ÷fl000 run on the TI-Explorer could not be 
made without significant disk overhead, and the reported 
time includes that amount; likely, that is why the Ex- 
plorer makes such a relatively poor showing on this task, 
whereas generally its micro¢oded bignums are signifi- 
cantly faster than any other implementation. 

It is noteworthy that when the Symbolics (ephem- 
eral) garbage collector is turned off, the 3645 numbers 
grow significantly worse: the 2.6 seconds of +fl000 be- 
comes 4.5, and the 15.6 seconds of FR2-15 becomes 21. 
For many bignum-orlented applications, the 'construct- 
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ing' up of bignums as intermediate returned values, and 
the subsequent reclamation thereof, places a memory- 
management load on the system that can dominate the 
cost of the numerical algorithms. In this case, it was 
probably the disk swap time to make room for the ever- 
increasing address space; a properly working incremental 
garbage collector will tend to re-use recently abandoned 
cells before resorting to paging activity. 

4.3.2 Comparison~ with Spmbolica $600 

Interestingly enough, Symbolies bignums are basi- 
cally written in Lisp; however, they have a few extra mi- 
crocoded operations to prevent 'cousing' during the low- 
level arithmetic steps. For example, they have a 2-input, 
2-output 32-bit multiply so that their mbigit size is 32, 
which surely helps explain the 3600's overall good per- 
formance for a Lisp-written implementation. By way of 
comparison, that is very roughly twice as fast as Lucid's 
implementation on the MC68020, which currently uses an 
mhigit size of 16 bits; but it is roughly twice as slow as 
Franz Inc's implementation on the MC68020, which also 
has an mbigit size of 16 bits, but which has a 'best possi- 
ble' machine language strategy. {Both Lucid's sad Frsas 
Inc's MC68000 series implementations are positioned to 
run on the MC68010, and do not yet take advantage of 
any of the extensions available on the MC68020.] 

of the micro-benchmarks noticeably faster than the other 
MC68000 implementations; ineed, Franz describes their 
algorithms as being "in machine language" all the way. 
So we use them as a comparison point for the Lisp-written 
o n 4 ~ .  

Table IV simply re-lists information tabulated eke- 
where, but make it easier to compare the relevant parts. 

If the figures postulated for a Lucid Common Lisp 
on the micro-VAX/II are anywhere near correct, then we 
could compare them with corresponding times for VAX 
LISP. An interesting point of departure is that while ad- 
dition •nd multiplication arc coded in a machine lan- 
guage "best possible n way for VAX LISP, the division 
algorithm is still in Lisp. This would be noticed by VAX 
LISP having a factor of four or so edge in the addition 
and multiplication micro-benchmarks, but in Lucid Com- 
mon Lisp having a factor of four or so edge in the division 
micro-benchmark. 

5. Conclusions 

Several prototype, simple primitive operations have 
boon identified which, when put in the compiler as tern. 
plates for the code generator, will yield striking improve- 
ment8 in perform~os for the Lisp-written bignum ira- 

T A B L E  IV: Timings  of  Imp lemen ta t i ons  on MC68000 Series 

All times are in seconds. 

~Machine 
PSL/68010 
Franz/6S010 
Lucid/68010 
Fren~CL/68010 
Lucid/68020 
Fra~CL/66020 

17.12 2.20 
4.o8 .5oo 
4,6O .58e 
1.22 . lS0 

PflO00 +flO00 

11.52 11.8 
15.1 3.23 

3.0 4.40 
3.5T .933 

10.0 
6.55 
3.60 
1.30 

2.04 ~ 
.85" 
.776 
.5 
.280 
.183 

FR2-10 PR2-15 
37.6* (fall?) 
16.53 188 
12.32 143.4 

5.8 53. 
4.14 45.2 
2.1 16.9 

Symbolic'e 3600 is descended from the MIT Lisp ms- 
chine, which had bignums in micro-code. Tl 's  Explorer is 
tiso descended from the MIT machine, but is much closer 
to it than the 3600 is; in fact, the Explorer's bignums are 
in micro-code. Hence we can understand why the F,x- 
plorer, which clocks in at about 3/4 the speed of a 3600 
on many other benchmarks, surpasses the 3600 by factors 
up to three sad a half on these micro-benchmarks. 

4 .4  Compa~son oi New Primltiv~ mith "Best Poodble" 

The only implementations directly comparable to 
the publicly available Lucid Common Lisps are those 
produced by F r m ,  Inc. on the MC68000 series of ms- 
chines. Frans Inc.'s Common Lisp bignums run several 

plementation. Speed-up factors of throe to five on real- 
istic benchmarks have been o b ~ - v ~ .  Furthermore, the 
speeded-up versions were well within the goal of half in 
order of magnitude of best possible in that the FRPOLY 
benchmarks in a comparable enviromnent, but with "best 
possible" machine language coding of b i~ums,  were 
only from 1.5 to 2.7 times faster; similarly the micro- 
b,mchnmrks for addition, multiplication, and division 
were only three or four times faster in the abest pesai- 
ble I version. 

These new primitive operations are indeed simple to 
implement; those for the RlsG-type machine mentioned 
above were prngrsmmed and fully debugged in well under 
four man days by a Lucid employee who knew nothing 
about the bignum algorithnm themselves, sad very little 
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about the the structure of the compiler's code generator. 
Another Lucid employee, working on a port to another 
kind of machine, coded up the primitives, and their aux- 
iliary LAP macros, in only s couple of hours (but that 
port has not yet reached the operational stage yet, so 
it is not possible to debug them yet--we eagerly await 
his results). This supports the hypothesis that the new 
primitives are easy for a porter to handle. 

Starting from a Lisp-written base is a viable strategy 
for bign-mn, and Lucid is not alone in trying it. Appar- 
ently declining the option of re-working the MIT Lisp 
Machine microcode for the 3600, Symbolics opted for a 
Lisp-written version even though they are not in the busi- 
ness of porting their system to a variety of other hard- 
w a r e .  
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